Viewing file: special_insns.h (7.21 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H
#ifdef __KERNEL__
#include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h>
/* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */
#define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL)
void native_write_cr0(unsigned long val);
static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; }
static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; }
static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); }
static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; }
static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); }
static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; }
void native_write_cr4(unsigned long val);
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru;
/* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; }
static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0;
/* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); }
static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return;
wrpkru(pkru); }
#else static inline u32 rdpkru(void) { return 0; }
static inline void __write_pkru(u32 pkru) { } #endif
static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); }
extern asmlinkage void asm_load_gs_index(unsigned int selector);
static inline void native_load_gs_index(unsigned int selector) { unsigned long flags;
local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); }
static inline unsigned long __read_cr4(void) { return native_read_cr4(); }
#ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else
static inline unsigned long read_cr0(void) { return native_read_cr0(); }
static inline void write_cr0(unsigned long x) { native_write_cr0(x); }
static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); }
static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); }
/* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); }
static inline void write_cr3(unsigned long x) { native_write_cr3(x); }
static inline void __write_cr4(unsigned long x) { native_write_cr4(x); }
static inline void wbinvd(void) { native_wbinvd(); }
#ifdef CONFIG_X86_64
static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); }
#endif
#endif /* CONFIG_PARAVIRT_XXL */
static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); }
static inline void clflushopt(volatile void *__p) { alternative_io(".byte 0x3e; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); }
static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p;
asm volatile(ALTERNATIVE_2( ".byte 0x3e; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); }
#define nop() asm volatile ("nop")
static inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); }
/* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst;
/* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); }
/** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf;
/* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src));
/* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN;
return 0; }
#endif /* __KERNEL__ */
#endif /* _ASM_X86_SPECIAL_INSNS_H */
|