!C99Shell v. 2.0 [PHP 7 Update] [25.02.2019]!

Software: nginx/1.23.4. PHP/5.6.40-65+ubuntu20.04.1+deb.sury.org+1 

uname -a: Linux foro-restaurado-2 5.15.0-1040-oracle #46-Ubuntu SMP Fri Jul 14 21:47:21 UTC 2023
aarch64
 

uid=33(www-data) gid=33(www-data) groups=33(www-data) 

Safe-mode: OFF (not secure)

/usr/src/linux-oracle-6.8-headers-6.8.0-1027/include/linux/   drwxr-xr-x
Free 83.29 GB of 96.73 GB (86.11%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     rbtree_latch.h (6.66 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Latched RB-trees
 *
 * Copyright (C) 2015 Intel Corp., Peter Zijlstra <[email protected]>
 *
 * Since RB-trees have non-atomic modifications they're not immediately suited
 * for RCU/lockless queries. Even though we made RB-tree lookups non-fatal for
 * lockless lookups; we cannot guarantee they return a correct result.
 *
 * The simplest solution is a seqlock + RB-tree, this will allow lockless
 * lookups; but has the constraint (inherent to the seqlock) that read sides
 * cannot nest in write sides.
 *
 * If we need to allow unconditional lookups (say as required for NMI context
 * usage) we need a more complex setup; this data structure provides this by
 * employing the latch technique -- see @raw_write_seqcount_latch -- to
 * implement a latched RB-tree which does allow for unconditional lookups by
 * virtue of always having (at least) one stable copy of the tree.
 *
 * However, while we have the guarantee that there is at all times one stable
 * copy, this does not guarantee an iteration will not observe modifications.
 * What might have been a stable copy at the start of the iteration, need not
 * remain so for the duration of the iteration.
 *
 * Therefore, this does require a lockless RB-tree iteration to be non-fatal;
 * see the comment in lib/rbtree.c. Note however that we only require the first
 * condition -- not seeing partial stores -- because the latch thing isolates
 * us from loops. If we were to interrupt a modification the lookup would be
 * pointed at the stable tree and complete while the modification was halted.
 */

#ifndef RB_TREE_LATCH_H
#define RB_TREE_LATCH_H

#include <linux/rbtree.h>
#include <linux/seqlock.h>
#include <linux/rcupdate.h>

struct latch_tree_node {
    struct rb_node node[2];
};

struct latch_tree_root {
    seqcount_latch_t    seq;
    struct rb_root        tree[2];
};

/**
 * latch_tree_ops - operators to define the tree order
 * @less: used for insertion; provides the (partial) order between two elements.
 * @comp: used for lookups; provides the order between the search key and an element.
 *
 * The operators are related like:
 *
 *    comp(a->key,b) < 0  := less(a,b)
 *    comp(a->key,b) > 0  := less(b,a)
 *    comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
 *
 * If these operators define a partial order on the elements we make no
 * guarantee on which of the elements matching the key is found. See
 * latch_tree_find().
 */
struct latch_tree_ops {
    bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b);
    int  (*comp)(void *key,                 struct latch_tree_node *b);
};

static __always_inline struct latch_tree_node *
__lt_from_rb(struct rb_node *node, int idx)
{
    return container_of(node, struct latch_tree_node, node[idx]);
}

static __always_inline void
__lt_insert(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx,
        bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b))
{
    struct rb_root *root = &ltr->tree[idx];
    struct rb_node **link = &root->rb_node;
    struct rb_node *node = &ltn->node[idx];
    struct rb_node *parent = NULL;
    struct latch_tree_node *ltp;

    while (*link) {
        parent = *link;
        ltp = __lt_from_rb(parent, idx);

        if (less(ltn, ltp))
            link = &parent->rb_left;
        else
            link = &parent->rb_right;
    }

    rb_link_node_rcu(node, parent, link);
    rb_insert_color(node, root);
}

static __always_inline void
__lt_erase(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx)
{
    rb_erase(&ltn->node[idx], &ltr->tree[idx]);
}

static __always_inline struct latch_tree_node *
__lt_find(void *key, struct latch_tree_root *ltr, int idx,
      int (*comp)(void *key, struct latch_tree_node *node))
{
    struct rb_node *node = rcu_dereference_raw(ltr->tree[idx].rb_node);
    struct latch_tree_node *ltn;
    int c;

    while (node) {
        ltn = __lt_from_rb(node, idx);
        c = comp(key, ltn);

        if (c < 0)
            node = rcu_dereference_raw(node->rb_left);
        else if (c > 0)
            node = rcu_dereference_raw(node->rb_right);
        else
            return ltn;
    }

    return NULL;
}

/**
 * latch_tree_insert() - insert @node into the trees @root
 * @node: nodes to insert
 * @root: trees to insert @node into
 * @ops: operators defining the node order
 *
 * It inserts @node into @root in an ordered fashion such that we can always
 * observe one complete tree. See the comment for raw_write_seqcount_latch().
 *
 * The inserts use rcu_assign_pointer() to publish the element such that the
 * tree structure is stored before we can observe the new @node.
 *
 * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
 * serialized.
 */
static __always_inline void
latch_tree_insert(struct latch_tree_node *node,
          struct latch_tree_root *root,
          const struct latch_tree_ops *ops)
{
    raw_write_seqcount_latch(&root->seq);
    __lt_insert(node, root, 0, ops->less);
    raw_write_seqcount_latch(&root->seq);
    __lt_insert(node, root, 1, ops->less);
}

/**
 * latch_tree_erase() - removes @node from the trees @root
 * @node: nodes to remote
 * @root: trees to remove @node from
 * @ops: operators defining the node order
 *
 * Removes @node from the trees @root in an ordered fashion such that we can
 * always observe one complete tree. See the comment for
 * raw_write_seqcount_latch().
 *
 * It is assumed that @node will observe one RCU quiescent state before being
 * reused of freed.
 *
 * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
 * serialized.
 */
static __always_inline void
latch_tree_erase(struct latch_tree_node *node,
         struct latch_tree_root *root,
         const struct latch_tree_ops *ops)
{
    raw_write_seqcount_latch(&root->seq);
    __lt_erase(node, root, 0);
    raw_write_seqcount_latch(&root->seq);
    __lt_erase(node, root, 1);
}

/**
 * latch_tree_find() - find the node matching @key in the trees @root
 * @key: search key
 * @root: trees to search for @key
 * @ops: operators defining the node order
 *
 * Does a lockless lookup in the trees @root for the node matching @key.
 *
 * It is assumed that this is called while holding the appropriate RCU read
 * side lock.
 *
 * If the operators define a partial order on the elements (there are multiple
 * elements which have the same key value) it is undefined which of these
 * elements will be found. Nor is it possible to iterate the tree to find
 * further elements with the same key value.
 *
 * Returns: a pointer to the node matching @key or NULL.
 */
static __always_inline struct latch_tree_node *
latch_tree_find(void *key, struct latch_tree_root *root,
        const struct latch_tree_ops *ops)
{
    struct latch_tree_node *node;
    unsigned int seq;

    do {
        seq = raw_read_seqcount_latch(&root->seq);
        node = __lt_find(key, root, seq & 1, ops->comp);
    } while (raw_read_seqcount_latch_retry(&root->seq, seq));

    return node;
}

#endif /* RB_TREE_LATCH_H */

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.0 [PHP 7 Update] [25.02.2019] maintained by HackingTool | HackingTool | Generation time: 0.0033 ]--