Viewing file: efi.h (5.05 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_EFI_H #define _ASM_EFI_H
#include <asm/boot.h> #include <asm/cpufeature.h> #include <asm/fpsimd.h> #include <asm/io.h> #include <asm/memory.h> #include <asm/mmu_context.h> #include <asm/neon.h> #include <asm/ptrace.h> #include <asm/tlbflush.h>
#ifdef CONFIG_EFI extern void efi_init(void);
bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg); #else #define efi_init()
static inline bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg) { return false; } #endif
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md, bool has_bti);
#undef arch_efi_call_virt #define arch_efi_call_virt(p, f, args...) \ __efi_rt_asm_wrapper((p)->f, #f, args)
extern u64 *efi_rt_stack_top; efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
void arch_efi_call_virt_setup(void); void arch_efi_call_virt_teardown(void);
/* * efi_rt_stack_top[-1] contains the value the stack pointer had before * switching to the EFI runtime stack. */ #define current_in_efi() \ (!preemptible() && efi_rt_stack_top != NULL && \ on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1))
#define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
/* * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not. * And EFI shouldn't really play around with priority masking as it is not aware * which priorities the OS has assigned to its interrupts. */ #define arch_efi_save_flags(state_flags) \ ((void)((state_flags) = read_sysreg(daif)))
#define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif)
/* arch specific definitions used by the stub code */
/* * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the * kernel need greater alignment than we require the segments to be padded to. */ #define EFI_KIMG_ALIGN \ (SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
/* * On arm64, we have to ensure that the initrd ends up in the linear region, * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is * guaranteed to cover the kernel Image. * * Since the EFI stub is part of the kernel Image, we can relax the * usual requirements in Documentation/arch/arm64/booting.rst, which still * apply to other bootloaders, and are required for some kernel * configurations. */ static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr) { return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1)); }
static inline unsigned long efi_get_kimg_min_align(void) { extern bool efi_nokaslr;
/* * Although relocatable kernels can fix up the misalignment with * respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are * subtly out of sync with those recorded in the vmlinux when kaslr is * disabled but the image required relocation anyway. Therefore retain * 2M alignment if KASLR was explicitly disabled, even if it was not * going to be activated to begin with. */ return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN; }
#define EFI_ALLOC_ALIGN SZ_64K #define EFI_ALLOC_LIMIT ((1UL << 48) - 1)
extern unsigned long primary_entry_offset(void);
/* * On ARM systems, virtually remapped UEFI runtime services are set up in two * distinct stages: * - The stub retrieves the final version of the memory map from UEFI, populates * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime * service to communicate the new mapping to the firmware (Note that the new * mapping is not live at this time) * - During an early initcall(), the EFI system table is permanently remapped * and the virtual remapping of the UEFI Runtime Services regions is loaded * into a private set of page tables. If this all succeeds, the Runtime * Services are enabled and the EFI_RUNTIME_SERVICES bit set. */
static inline void efi_set_pgd(struct mm_struct *mm) { __switch_mm(mm);
if (system_uses_ttbr0_pan()) { if (mm != current->active_mm) { /* * Update the current thread's saved ttbr0 since it is * restored as part of a return from exception. Enable * access to the valid TTBR0_EL1 and invoke the errata * workaround directly since there is no return from * exception when invoking the EFI run-time services. */ update_saved_ttbr0(current, mm); uaccess_ttbr0_enable(); post_ttbr_update_workaround(); } else { /* * Defer the switch to the current thread's TTBR0_EL1 * until uaccess_enable(). Restore the current * thread's saved ttbr0 corresponding to its active_mm */ uaccess_ttbr0_disable(); update_saved_ttbr0(current, current->active_mm); } } }
void efi_virtmap_load(void); void efi_virtmap_unload(void);
static inline void efi_capsule_flush_cache_range(void *addr, int size) { dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size); }
efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f);
void efi_icache_sync(unsigned long start, unsigned long end);
#endif /* _ASM_EFI_H */
|