Viewing file: pgtable.h (9.89 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H #define _ASM_POWERPC_NOHASH_PGTABLE_H
#ifndef __ASSEMBLY__ static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, unsigned long clr, unsigned long set, int huge); #endif
#if defined(CONFIG_PPC64) #include <asm/nohash/64/pgtable.h> #else #include <asm/nohash/32/pgtable.h> #endif
/* * _PAGE_CHG_MASK masks of bits that are to be preserved across * pgprot changes. */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
/* Permission masks used for kernel mappings */ #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED) #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
#ifndef __ASSEMBLY__
extern int icache_44x_need_flush;
/* * PTE updates. This function is called whenever an existing * valid PTE is updated. This does -not- include set_pte_at() * which nowadays only sets a new PTE. * * Depending on the type of MMU, we may need to use atomic updates * and the PTE may be either 32 or 64 bit wide. In the later case, * when using atomic updates, only the low part of the PTE is * accessed atomically. * * In addition, on 44x, we also maintain a global flag indicating * that an executable user mapping was modified, which is needed * to properly flush the virtually tagged instruction cache of * those implementations. */ #ifndef pte_update static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, unsigned long clr, unsigned long set, int huge) { pte_basic_t old = pte_val(*p); pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
if (new == old) return old;
*p = __pte(new);
if (IS_ENABLED(CONFIG_44x) && !is_kernel_addr(addr) && (old & _PAGE_EXEC)) icache_44x_need_flush = 1;
/* huge pages use the old page table lock */ if (!huge) assert_pte_locked(mm, addr);
return old; } #endif
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { unsigned long old;
old = pte_update(vma->vm_mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#ifndef ptep_set_wrprotect static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); } #endif #define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0)); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_update(mm, addr, ptep, ~0UL, 0, 0); }
/* Set the dirty and/or accessed bits atomically in a linux PTE */ #ifndef __ptep_set_access_flags static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); int huge = psize > mmu_virtual_psize ? 1 : 0;
pte_update(vma->vm_mm, address, ptep, 0, set, huge);
flush_tlb_page(vma, address); } #endif
/* Generic accessors to PTE bits */ #ifndef pte_mkwrite_novma static inline pte_t pte_mkwrite_novma(pte_t pte) { /* * write implies read, hence set both */ return __pte(pte_val(pte) | _PAGE_RW); } #endif
static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); }
static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); }
#ifndef pte_wrprotect static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_WRITE); } #endif
#ifndef pte_mkexec static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) | _PAGE_EXEC); } #endif
#ifndef pte_write static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } #endif static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } static inline bool pte_hashpte(pte_t pte) { return false; } static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; } static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
static inline bool pte_hw_valid(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
/* * Don't just check for any non zero bits in __PAGE_READ, since for book3e * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in * _PAGE_READ. Need to explicitly match _PAGE_BAP_UR bit in that case too. */ #ifndef pte_read static inline bool pte_read(pte_t pte) { return (pte_val(pte) & _PAGE_READ) == _PAGE_READ; } #endif
/* * We only find page table entry in the last level * Hence no need for other accessors */ #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { /* * A read-only access is controlled by _PAGE_READ bit. * We have _PAGE_READ set for WRITE */ if (!pte_present(pte) || !pte_read(pte)) return false;
if (write && !pte_write(pte)) return false;
return true; }
/* Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | pgprot_val(pgprot)); }
/* Generic modifiers for PTE bits */ static inline pte_t pte_exprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_EXEC); }
static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); }
static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); }
static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); }
#ifndef pte_mkhuge static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte)); } #endif
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); }
static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; }
static inline pte_t pte_swp_mkexclusive(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); }
static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); }
/* This low level function performs the actual PTE insertion * Setting the PTE depends on the MMU type and other factors. It's * an horrible mess that I'm not going to try to clean up now but * I'm keeping it in one place rather than spread around */ static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { /* Second case is 32-bit with 64-bit PTE. In this case, we * can just store as long as we do the two halves in the right order * with a barrier in between. * In the percpu case, we also fallback to the simple update */ if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) { __asm__ __volatile__("\ stw%X0 %2,%0\n\ mbar\n\ stw%X1 %L2,%1" : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : "r" (pte) : "memory"); return; } /* Anything else just stores the PTE normally. That covers all 64-bit * cases, and 32-bit non-hash with 32-bit PTEs. */ #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES) ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte); #else *ptep = pte; #endif
/* * With hardware tablewalk, a sync is needed to ensure that * subsequent accesses see the PTE we just wrote. Unlike userspace * mappings, we can't tolerate spurious faults, so make sure * the new PTE will be seen the first time. */ if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr)) mb(); }
/* * Macro to mark a page protection value as "uncacheable". */
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ _PAGE_WRITETHRU)
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE | _PAGE_GUARDED))
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE))
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT))
#if _PAGE_WRITETHRU != 0 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT | _PAGE_WRITETHRU)) #else #define pgprot_cached_wthru(prot) pgprot_noncached(prot) #endif
#define pgprot_cached_noncoherent(prot) \ (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
#define pgprot_writecombine pgprot_noncached_wc
#ifdef CONFIG_HUGETLB_PAGE static inline int hugepd_ok(hugepd_t hpd) { #ifdef CONFIG_PPC_8xx return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M); #else /* We clear the top bit to indicate hugepd */ return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0); #endif }
static inline int pmd_huge(pmd_t pmd) { return 0; }
static inline int pud_huge(pud_t pud) { return 0; }
#define is_hugepd(hpd) (hugepd_ok(hpd)) #endif
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); void unmap_kernel_page(unsigned long va);
#endif /* __ASSEMBLY__ */ #endif
|