!C99Shell v. 2.0 [PHP 7 Update] [25.02.2019]!

Software: nginx/1.23.4. PHP/5.6.40-65+ubuntu20.04.1+deb.sury.org+1 

uname -a: Linux foro-restaurado-2 5.15.0-1040-oracle #46-Ubuntu SMP Fri Jul 14 21:47:21 UTC 2023
aarch64
 

uid=33(www-data) gid=33(www-data) groups=33(www-data) 

Safe-mode: OFF (not secure)

/usr/src/linux-oracle-6.8-headers-6.8.0-1028/include/linux/   drwxr-xr-x
Free 83.34 GB of 96.73 GB (86.16%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     bpf.h (102.81 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 */
#ifndef _LINUX_BPF_H
#define _LINUX_BPF_H 1

#include <uapi/linux/bpf.h>
#include <uapi/linux/filter.h>

#include <linux/workqueue.h>
#include <linux/file.h>
#include <linux/percpu.h>
#include <linux/err.h>
#include <linux/rbtree_latch.h>
#include <linux/numa.h>
#include <linux/mm_types.h>
#include <linux/wait.h>
#include <linux/refcount.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/capability.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/percpu-refcount.h>
#include <linux/stddef.h>
#include <linux/bpfptr.h>
#include <linux/btf.h>
#include <linux/rcupdate_trace.h>
#include <linux/static_call.h>
#include <linux/memcontrol.h>
#include <linux/cfi.h>

struct bpf_verifier_env;
struct bpf_verifier_log;
struct perf_event;
struct bpf_prog;
struct bpf_prog_aux;
struct bpf_map;
struct sock;
struct seq_file;
struct btf;
struct btf_type;
struct exception_table_entry;
struct seq_operations;
struct bpf_iter_aux_info;
struct bpf_local_storage;
struct bpf_local_storage_map;
struct kobject;
struct mem_cgroup;
struct module;
struct bpf_func_state;
struct ftrace_ops;
struct cgroup;

extern struct idr btf_idr;
extern spinlock_t btf_idr_lock;
extern struct kobject *btf_kobj;
extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
extern bool bpf_global_ma_set;

typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
                    struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
typedef unsigned int (*bpf_func_t)(const void *,
                   const struct bpf_insn *);
struct bpf_iter_seq_info {
    const struct seq_operations *seq_ops;
    bpf_iter_init_seq_priv_t init_seq_private;
    bpf_iter_fini_seq_priv_t fini_seq_private;
    u32 seq_priv_size;
};

/* map is generic key/value storage optionally accessible by eBPF programs */
struct bpf_map_ops {
    /* funcs callable from userspace (via syscall) */
    int (*map_alloc_check)(union bpf_attr *attr);
    struct bpf_map *(*map_alloc)(union bpf_attr *attr);
    void (*map_release)(struct bpf_map *map, struct file *map_file);
    void (*map_free)(struct bpf_map *map);
    int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
    void (*map_release_uref)(struct bpf_map *map);
    void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
    int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
                union bpf_attr __user *uattr);
    int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
                      void *value, u64 flags);
    int (*map_lookup_and_delete_batch)(struct bpf_map *map,
                       const union bpf_attr *attr,
                       union bpf_attr __user *uattr);
    int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
                const union bpf_attr *attr,
                union bpf_attr __user *uattr);
    int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
                union bpf_attr __user *uattr);

    /* funcs callable from userspace and from eBPF programs */
    void *(*map_lookup_elem)(struct bpf_map *map, void *key);
    long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
    long (*map_delete_elem)(struct bpf_map *map, void *key);
    long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
    long (*map_pop_elem)(struct bpf_map *map, void *value);
    long (*map_peek_elem)(struct bpf_map *map, void *value);
    void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);

    /* funcs called by prog_array and perf_event_array map */
    void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
                int fd);
    /* If need_defer is true, the implementation should guarantee that
     * the to-be-put element is still alive before the bpf program, which
     * may manipulate it, exists.
     */
    void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
    int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
    u32 (*map_fd_sys_lookup_elem)(void *ptr);
    void (*map_seq_show_elem)(struct bpf_map *map, void *key,
                  struct seq_file *m);
    int (*map_check_btf)(const struct bpf_map *map,
                 const struct btf *btf,
                 const struct btf_type *key_type,
                 const struct btf_type *value_type);

    /* Prog poke tracking helpers. */
    int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
    void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
    void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
                 struct bpf_prog *new);

    /* Direct value access helpers. */
    int (*map_direct_value_addr)(const struct bpf_map *map,
                     u64 *imm, u32 off);
    int (*map_direct_value_meta)(const struct bpf_map *map,
                     u64 imm, u32 *off);
    int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
    __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
                 struct poll_table_struct *pts);

    /* Functions called by bpf_local_storage maps */
    int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
                    void *owner, u32 size);
    void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
                       void *owner, u32 size);
    struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);

    /* Misc helpers.*/
    long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);

    /* map_meta_equal must be implemented for maps that can be
     * used as an inner map.  It is a runtime check to ensure
     * an inner map can be inserted to an outer map.
     *
     * Some properties of the inner map has been used during the
     * verification time.  When inserting an inner map at the runtime,
     * map_meta_equal has to ensure the inserting map has the same
     * properties that the verifier has used earlier.
     */
    bool (*map_meta_equal)(const struct bpf_map *meta0,
                   const struct bpf_map *meta1);


    int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
                          struct bpf_func_state *caller,
                          struct bpf_func_state *callee);
    long (*map_for_each_callback)(struct bpf_map *map,
                     bpf_callback_t callback_fn,
                     void *callback_ctx, u64 flags);

    u64 (*map_mem_usage)(const struct bpf_map *map);

    /* BTF id of struct allocated by map_alloc */
    int *map_btf_id;

    /* bpf_iter info used to open a seq_file */
    const struct bpf_iter_seq_info *iter_seq_info;
};

enum {
    /* Support at most 10 fields in a BTF type */
    BTF_FIELDS_MAX       = 10,
};

enum btf_field_type {
    BPF_SPIN_LOCK  = (1 << 0),
    BPF_TIMER      = (1 << 1),
    BPF_KPTR_UNREF = (1 << 2),
    BPF_KPTR_REF   = (1 << 3),
    BPF_KPTR_PERCPU = (1 << 4),
    BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
    BPF_LIST_HEAD  = (1 << 5),
    BPF_LIST_NODE  = (1 << 6),
    BPF_RB_ROOT    = (1 << 7),
    BPF_RB_NODE    = (1 << 8),
    BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
    BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
    BPF_REFCOUNT   = (1 << 9),
};

typedef void (*btf_dtor_kfunc_t)(void *);

struct btf_field_kptr {
    struct btf *btf;
    struct module *module;
    /* dtor used if btf_is_kernel(btf), otherwise the type is
     * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
     */
    btf_dtor_kfunc_t dtor;
    u32 btf_id;
};

struct btf_field_graph_root {
    struct btf *btf;
    u32 value_btf_id;
    u32 node_offset;
    struct btf_record *value_rec;
};

struct btf_field {
    u32 offset;
    u32 size;
    enum btf_field_type type;
    union {
        struct btf_field_kptr kptr;
        struct btf_field_graph_root graph_root;
    };
};

struct btf_record {
    u32 cnt;
    u32 field_mask;
    int spin_lock_off;
    int timer_off;
    int refcount_off;
    struct btf_field fields[];
};

/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
struct bpf_rb_node_kern {
    struct rb_node rb_node;
    void *owner;
} __attribute__((aligned(8)));

/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
struct bpf_list_node_kern {
    struct list_head list_head;
    void *owner;
} __attribute__((aligned(8)));

struct bpf_map {
    /* The first two cachelines with read-mostly members of which some
     * are also accessed in fast-path (e.g. ops, max_entries).
     */
    const struct bpf_map_ops *ops ____cacheline_aligned;
    struct bpf_map *inner_map_meta;
#ifdef CONFIG_SECURITY
    void *security;
#endif
    enum bpf_map_type map_type;
    u32 key_size;
    u32 value_size;
    u32 max_entries;
    u64 map_extra; /* any per-map-type extra fields */
    u32 map_flags;
    u32 id;
    struct btf_record *record;
    int numa_node;
    u32 btf_key_type_id;
    u32 btf_value_type_id;
    u32 btf_vmlinux_value_type_id;
    struct btf *btf;
#ifdef CONFIG_MEMCG_KMEM
    struct obj_cgroup *objcg;
#endif
    char name[BPF_OBJ_NAME_LEN];
    /* The 3rd and 4th cacheline with misc members to avoid false sharing
     * particularly with refcounting.
     */
    atomic64_t refcnt ____cacheline_aligned;
    atomic64_t usercnt;
    /* rcu is used before freeing and work is only used during freeing */
    union {
        struct work_struct work;
        struct rcu_head rcu;
    };
    struct mutex freeze_mutex;
    atomic64_t writecnt;
    /* 'Ownership' of program-containing map is claimed by the first program
     * that is going to use this map or by the first program which FD is
     * stored in the map to make sure that all callers and callees have the
     * same prog type, JITed flag and xdp_has_frags flag.
     */
    struct {
        const struct btf_type *attach_func_proto;
        spinlock_t lock;
        enum bpf_prog_type type;
        bool jited;
        bool xdp_has_frags;
    } owner;
    bool bypass_spec_v1;
    bool frozen; /* write-once; write-protected by freeze_mutex */
    bool free_after_mult_rcu_gp;
    bool free_after_rcu_gp;
    atomic64_t sleepable_refcnt;
    s64 __percpu *elem_count;
};

static inline const char *btf_field_type_name(enum btf_field_type type)
{
    switch (type) {
    case BPF_SPIN_LOCK:
        return "bpf_spin_lock";
    case BPF_TIMER:
        return "bpf_timer";
    case BPF_KPTR_UNREF:
    case BPF_KPTR_REF:
        return "kptr";
    case BPF_KPTR_PERCPU:
        return "percpu_kptr";
    case BPF_LIST_HEAD:
        return "bpf_list_head";
    case BPF_LIST_NODE:
        return "bpf_list_node";
    case BPF_RB_ROOT:
        return "bpf_rb_root";
    case BPF_RB_NODE:
        return "bpf_rb_node";
    case BPF_REFCOUNT:
        return "bpf_refcount";
    default:
        WARN_ON_ONCE(1);
        return "unknown";
    }
}

static inline u32 btf_field_type_size(enum btf_field_type type)
{
    switch (type) {
    case BPF_SPIN_LOCK:
        return sizeof(struct bpf_spin_lock);
    case BPF_TIMER:
        return sizeof(struct bpf_timer);
    case BPF_KPTR_UNREF:
    case BPF_KPTR_REF:
    case BPF_KPTR_PERCPU:
        return sizeof(u64);
    case BPF_LIST_HEAD:
        return sizeof(struct bpf_list_head);
    case BPF_LIST_NODE:
        return sizeof(struct bpf_list_node);
    case BPF_RB_ROOT:
        return sizeof(struct bpf_rb_root);
    case BPF_RB_NODE:
        return sizeof(struct bpf_rb_node);
    case BPF_REFCOUNT:
        return sizeof(struct bpf_refcount);
    default:
        WARN_ON_ONCE(1);
        return 0;
    }
}

static inline u32 btf_field_type_align(enum btf_field_type type)
{
    switch (type) {
    case BPF_SPIN_LOCK:
        return __alignof__(struct bpf_spin_lock);
    case BPF_TIMER:
        return __alignof__(struct bpf_timer);
    case BPF_KPTR_UNREF:
    case BPF_KPTR_REF:
    case BPF_KPTR_PERCPU:
        return __alignof__(u64);
    case BPF_LIST_HEAD:
        return __alignof__(struct bpf_list_head);
    case BPF_LIST_NODE:
        return __alignof__(struct bpf_list_node);
    case BPF_RB_ROOT:
        return __alignof__(struct bpf_rb_root);
    case BPF_RB_NODE:
        return __alignof__(struct bpf_rb_node);
    case BPF_REFCOUNT:
        return __alignof__(struct bpf_refcount);
    default:
        WARN_ON_ONCE(1);
        return 0;
    }
}

static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
{
    memset(addr, 0, field->size);

    switch (field->type) {
    case BPF_REFCOUNT:
        refcount_set((refcount_t *)addr, 1);
        break;
    case BPF_RB_NODE:
        RB_CLEAR_NODE((struct rb_node *)addr);
        break;
    case BPF_LIST_HEAD:
    case BPF_LIST_NODE:
        INIT_LIST_HEAD((struct list_head *)addr);
        break;
    case BPF_RB_ROOT:
        /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
    case BPF_SPIN_LOCK:
    case BPF_TIMER:
    case BPF_KPTR_UNREF:
    case BPF_KPTR_REF:
    case BPF_KPTR_PERCPU:
        break;
    default:
        WARN_ON_ONCE(1);
        return;
    }
}

static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
{
    if (IS_ERR_OR_NULL(rec))
        return false;
    return rec->field_mask & type;
}

static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
{
    int i;

    if (IS_ERR_OR_NULL(rec))
        return;
    for (i = 0; i < rec->cnt; i++)
        bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
}

/* 'dst' must be a temporary buffer and should not point to memory that is being
 * used in parallel by a bpf program or bpf syscall, otherwise the access from
 * the bpf program or bpf syscall may be corrupted by the reinitialization,
 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
 * program or bpf syscall.
 */
static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
{
    bpf_obj_init(map->record, dst);
}

/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
 * forced to use 'long' read/writes to try to atomically copy long counters.
 * Best-effort only.  No barriers here, since it _will_ race with concurrent
 * updates from BPF programs. Called from bpf syscall and mostly used with
 * size 8 or 16 bytes, so ask compiler to inline it.
 */
static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
{
    const long *lsrc = src;
    long *ldst = dst;

    size /= sizeof(long);
    while (size--)
        data_race(*ldst++ = *lsrc++);
}

/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
static inline void bpf_obj_memcpy(struct btf_record *rec,
                  void *dst, void *src, u32 size,
                  bool long_memcpy)
{
    u32 curr_off = 0;
    int i;

    if (IS_ERR_OR_NULL(rec)) {
        if (long_memcpy)
            bpf_long_memcpy(dst, src, round_up(size, 8));
        else
            memcpy(dst, src, size);
        return;
    }

    for (i = 0; i < rec->cnt; i++) {
        u32 next_off = rec->fields[i].offset;
        u32 sz = next_off - curr_off;

        memcpy(dst + curr_off, src + curr_off, sz);
        curr_off += rec->fields[i].size + sz;
    }
    memcpy(dst + curr_off, src + curr_off, size - curr_off);
}

static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
{
    bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
}

static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
{
    bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
}

static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
{
    u32 curr_off = 0;
    int i;

    if (IS_ERR_OR_NULL(rec)) {
        memset(dst, 0, size);
        return;
    }

    for (i = 0; i < rec->cnt; i++) {
        u32 next_off = rec->fields[i].offset;
        u32 sz = next_off - curr_off;

        memset(dst + curr_off, 0, sz);
        curr_off += rec->fields[i].size + sz;
    }
    memset(dst + curr_off, 0, size - curr_off);
}

static inline void zero_map_value(struct bpf_map *map, void *dst)
{
    bpf_obj_memzero(map->record, dst, map->value_size);
}

void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
               bool lock_src);
void bpf_timer_cancel_and_free(void *timer);
void bpf_list_head_free(const struct btf_field *field, void *list_head,
            struct bpf_spin_lock *spin_lock);
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
              struct bpf_spin_lock *spin_lock);


int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);

struct bpf_offload_dev;
struct bpf_offloaded_map;

struct bpf_map_dev_ops {
    int (*map_get_next_key)(struct bpf_offloaded_map *map,
                void *key, void *next_key);
    int (*map_lookup_elem)(struct bpf_offloaded_map *map,
                   void *key, void *value);
    int (*map_update_elem)(struct bpf_offloaded_map *map,
                   void *key, void *value, u64 flags);
    int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
};

struct bpf_offloaded_map {
    struct bpf_map map;
    struct net_device *netdev;
    const struct bpf_map_dev_ops *dev_ops;
    void *dev_priv;
    struct list_head offloads;
};

static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
{
    return container_of(map, struct bpf_offloaded_map, map);
}

static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
{
    return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
}

static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
{
    return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
        map->ops->map_seq_show_elem;
}

int map_check_no_btf(const struct bpf_map *map,
             const struct btf *btf,
             const struct btf_type *key_type,
             const struct btf_type *value_type);

bool bpf_map_meta_equal(const struct bpf_map *meta0,
            const struct bpf_map *meta1);

extern const struct bpf_map_ops bpf_map_offload_ops;

/* bpf_type_flag contains a set of flags that are applicable to the values of
 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
 * or a memory is read-only. We classify types into two categories: base types
 * and extended types. Extended types are base types combined with a type flag.
 *
 * Currently there are no more than 32 base types in arg_type, ret_type and
 * reg_types.
 */
#define BPF_BASE_TYPE_BITS    8

enum bpf_type_flag {
    /* PTR may be NULL. */
    PTR_MAYBE_NULL        = BIT(0 + BPF_BASE_TYPE_BITS),

    /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
     * compatible with both mutable and immutable memory.
     */
    MEM_RDONLY        = BIT(1 + BPF_BASE_TYPE_BITS),

    /* MEM points to BPF ring buffer reservation. */
    MEM_RINGBUF        = BIT(2 + BPF_BASE_TYPE_BITS),

    /* MEM is in user address space. */
    MEM_USER        = BIT(3 + BPF_BASE_TYPE_BITS),

    /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
     * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
     * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
     * or bpf_this_cpu_ptr(), which will return the pointer corresponding
     * to the specified cpu.
     */
    MEM_PERCPU        = BIT(4 + BPF_BASE_TYPE_BITS),

    /* Indicates that the argument will be released. */
    OBJ_RELEASE        = BIT(5 + BPF_BASE_TYPE_BITS),

    /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
     * unreferenced and referenced kptr loaded from map value using a load
     * instruction, so that they can only be dereferenced but not escape the
     * BPF program into the kernel (i.e. cannot be passed as arguments to
     * kfunc or bpf helpers).
     */
    PTR_UNTRUSTED        = BIT(6 + BPF_BASE_TYPE_BITS),

    /* MEM can be uninitialized. */
    MEM_UNINIT        = BIT(7 + BPF_BASE_TYPE_BITS),

    /* DYNPTR points to memory local to the bpf program. */
    DYNPTR_TYPE_LOCAL    = BIT(8 + BPF_BASE_TYPE_BITS),

    /* DYNPTR points to a kernel-produced ringbuf record. */
    DYNPTR_TYPE_RINGBUF    = BIT(9 + BPF_BASE_TYPE_BITS),

    /* Size is known at compile time. */
    MEM_FIXED_SIZE        = BIT(10 + BPF_BASE_TYPE_BITS),

    /* MEM is of an allocated object of type in program BTF. This is used to
     * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
     */
    MEM_ALLOC        = BIT(11 + BPF_BASE_TYPE_BITS),

    /* PTR was passed from the kernel in a trusted context, and may be
     * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
     * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
     * PTR_UNTRUSTED refers to a kptr that was read directly from a map
     * without invoking bpf_kptr_xchg(). What we really need to know is
     * whether a pointer is safe to pass to a kfunc or BPF helper function.
     * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
     * helpers, they do not cover all possible instances of unsafe
     * pointers. For example, a pointer that was obtained from walking a
     * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
     * fact that it may be NULL, invalid, etc. This is due to backwards
     * compatibility requirements, as this was the behavior that was first
     * introduced when kptrs were added. The behavior is now considered
     * deprecated, and PTR_UNTRUSTED will eventually be removed.
     *
     * PTR_TRUSTED, on the other hand, is a pointer that the kernel
     * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
     * For example, pointers passed to tracepoint arguments are considered
     * PTR_TRUSTED, as are pointers that are passed to struct_ops
     * callbacks. As alluded to above, pointers that are obtained from
     * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
     * struct task_struct *task is PTR_TRUSTED, then accessing
     * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
     * in a BPF register. Similarly, pointers passed to certain programs
     * types such as kretprobes are not guaranteed to be valid, as they may
     * for example contain an object that was recently freed.
     */
    PTR_TRUSTED        = BIT(12 + BPF_BASE_TYPE_BITS),

    /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
    MEM_RCU            = BIT(13 + BPF_BASE_TYPE_BITS),

    /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
     * Currently only valid for linked-list and rbtree nodes. If the nodes
     * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
     */
    NON_OWN_REF        = BIT(14 + BPF_BASE_TYPE_BITS),

    /* DYNPTR points to sk_buff */
    DYNPTR_TYPE_SKB        = BIT(15 + BPF_BASE_TYPE_BITS),

    /* DYNPTR points to xdp_buff */
    DYNPTR_TYPE_XDP        = BIT(16 + BPF_BASE_TYPE_BITS),

    /* Memory must be aligned on some architectures, used in combination with
     * MEM_FIXED_SIZE.
     */
    MEM_ALIGNED        = BIT(17 + BPF_BASE_TYPE_BITS),

    /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
     * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
     * MEM_UNINIT means that memory needs to be initialized since it is also
     * read.
     */
    MEM_WRITE        = BIT(18 + BPF_BASE_TYPE_BITS),

    __BPF_TYPE_FLAG_MAX,
    __BPF_TYPE_LAST_FLAG    = __BPF_TYPE_FLAG_MAX - 1,
};

#define DYNPTR_TYPE_FLAG_MASK    (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
                 | DYNPTR_TYPE_XDP)

/* Max number of base types. */
#define BPF_BASE_TYPE_LIMIT    (1UL << BPF_BASE_TYPE_BITS)

/* Max number of all types. */
#define BPF_TYPE_LIMIT        (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))

/* function argument constraints */
enum bpf_arg_type {
    ARG_DONTCARE = 0,    /* unused argument in helper function */

    /* the following constraints used to prototype
     * bpf_map_lookup/update/delete_elem() functions
     */
    ARG_CONST_MAP_PTR,    /* const argument used as pointer to bpf_map */
    ARG_PTR_TO_MAP_KEY,    /* pointer to stack used as map key */
    ARG_PTR_TO_MAP_VALUE,    /* pointer to stack used as map value */

    /* Used to prototype bpf_memcmp() and other functions that access data
     * on eBPF program stack
     */
    ARG_PTR_TO_MEM,        /* pointer to valid memory (stack, packet, map value) */

    ARG_CONST_SIZE,        /* number of bytes accessed from memory */
    ARG_CONST_SIZE_OR_ZERO,    /* number of bytes accessed from memory or 0 */

    ARG_PTR_TO_CTX,        /* pointer to context */
    ARG_ANYTHING,        /* any (initialized) argument is ok */
    ARG_PTR_TO_SPIN_LOCK,    /* pointer to bpf_spin_lock */
    ARG_PTR_TO_SOCK_COMMON,    /* pointer to sock_common */
    ARG_PTR_TO_SOCKET,    /* pointer to bpf_sock (fullsock) */
    ARG_PTR_TO_BTF_ID,    /* pointer to in-kernel struct */
    ARG_PTR_TO_RINGBUF_MEM,    /* pointer to dynamically reserved ringbuf memory */
    ARG_CONST_ALLOC_SIZE_OR_ZERO,    /* number of allocated bytes requested */
    ARG_PTR_TO_BTF_ID_SOCK_COMMON,    /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
    ARG_PTR_TO_PERCPU_BTF_ID,    /* pointer to in-kernel percpu type */
    ARG_PTR_TO_FUNC,    /* pointer to a bpf program function */
    ARG_PTR_TO_STACK,    /* pointer to stack */
    ARG_PTR_TO_CONST_STR,    /* pointer to a null terminated read-only string */
    ARG_PTR_TO_TIMER,    /* pointer to bpf_timer */
    ARG_PTR_TO_KPTR,    /* pointer to referenced kptr */
    ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
    __BPF_ARG_TYPE_MAX,

    /* Extended arg_types. */
    ARG_PTR_TO_MAP_VALUE_OR_NULL    = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
    ARG_PTR_TO_MEM_OR_NULL        = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
    ARG_PTR_TO_CTX_OR_NULL        = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
    ARG_PTR_TO_SOCKET_OR_NULL    = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
    ARG_PTR_TO_STACK_OR_NULL    = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
    ARG_PTR_TO_BTF_ID_OR_NULL    = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
    /* Pointer to memory does not need to be initialized, since helper function
     * fills all bytes or clears them in error case.
     */
    ARG_PTR_TO_UNINIT_MEM        = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
    /* Pointer to valid memory of size known at compile time. */
    ARG_PTR_TO_FIXED_SIZE_MEM    = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,

    /* This must be the last entry. Its purpose is to ensure the enum is
     * wide enough to hold the higher bits reserved for bpf_type_flag.
     */
    __BPF_ARG_TYPE_LIMIT    = BPF_TYPE_LIMIT,
};
static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);

/* type of values returned from helper functions */
enum bpf_return_type {
    RET_INTEGER,            /* function returns integer */
    RET_VOID,            /* function doesn't return anything */
    RET_PTR_TO_MAP_VALUE,        /* returns a pointer to map elem value */
    RET_PTR_TO_SOCKET,        /* returns a pointer to a socket */
    RET_PTR_TO_TCP_SOCK,        /* returns a pointer to a tcp_sock */
    RET_PTR_TO_SOCK_COMMON,        /* returns a pointer to a sock_common */
    RET_PTR_TO_MEM,            /* returns a pointer to memory */
    RET_PTR_TO_MEM_OR_BTF_ID,    /* returns a pointer to a valid memory or a btf_id */
    RET_PTR_TO_BTF_ID,        /* returns a pointer to a btf_id */
    __BPF_RET_TYPE_MAX,

    /* Extended ret_types. */
    RET_PTR_TO_MAP_VALUE_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
    RET_PTR_TO_SOCKET_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
    RET_PTR_TO_TCP_SOCK_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
    RET_PTR_TO_SOCK_COMMON_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
    RET_PTR_TO_RINGBUF_MEM_OR_NULL    = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
    RET_PTR_TO_DYNPTR_MEM_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
    RET_PTR_TO_BTF_ID_OR_NULL    = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
    RET_PTR_TO_BTF_ID_TRUSTED    = PTR_TRUSTED     | RET_PTR_TO_BTF_ID,

    /* This must be the last entry. Its purpose is to ensure the enum is
     * wide enough to hold the higher bits reserved for bpf_type_flag.
     */
    __BPF_RET_TYPE_LIMIT    = BPF_TYPE_LIMIT,
};
static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);

/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
 * instructions after verifying
 */
struct bpf_func_proto {
    u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
    bool gpl_only;
    bool pkt_access;
    bool might_sleep;
    enum bpf_return_type ret_type;
    union {
        struct {
            enum bpf_arg_type arg1_type;
            enum bpf_arg_type arg2_type;
            enum bpf_arg_type arg3_type;
            enum bpf_arg_type arg4_type;
            enum bpf_arg_type arg5_type;
        };
        enum bpf_arg_type arg_type[5];
    };
    union {
        struct {
            u32 *arg1_btf_id;
            u32 *arg2_btf_id;
            u32 *arg3_btf_id;
            u32 *arg4_btf_id;
            u32 *arg5_btf_id;
        };
        u32 *arg_btf_id[5];
        struct {
            size_t arg1_size;
            size_t arg2_size;
            size_t arg3_size;
            size_t arg4_size;
            size_t arg5_size;
        };
        size_t arg_size[5];
    };
    int *ret_btf_id; /* return value btf_id */
    bool (*allowed)(const struct bpf_prog *prog);
};

/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
 * the first argument to eBPF programs.
 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
 */
struct bpf_context;

enum bpf_access_type {
    BPF_READ = 1,
    BPF_WRITE = 2
};

/* types of values stored in eBPF registers */
/* Pointer types represent:
 * pointer
 * pointer + imm
 * pointer + (u16) var
 * pointer + (u16) var + imm
 * if (range > 0) then [ptr, ptr + range - off) is safe to access
 * if (id > 0) means that some 'var' was added
 * if (off > 0) means that 'imm' was added
 */
enum bpf_reg_type {
    NOT_INIT = 0,         /* nothing was written into register */
    SCALAR_VALUE,         /* reg doesn't contain a valid pointer */
    PTR_TO_CTX,         /* reg points to bpf_context */
    CONST_PTR_TO_MAP,     /* reg points to struct bpf_map */
    PTR_TO_MAP_VALUE,     /* reg points to map element value */
    PTR_TO_MAP_KEY,         /* reg points to a map element key */
    PTR_TO_STACK,         /* reg == frame_pointer + offset */
    PTR_TO_PACKET_META,     /* skb->data - meta_len */
    PTR_TO_PACKET,         /* reg points to skb->data */
    PTR_TO_PACKET_END,     /* skb->data + headlen */
    PTR_TO_FLOW_KEYS,     /* reg points to bpf_flow_keys */
    PTR_TO_SOCKET,         /* reg points to struct bpf_sock */
    PTR_TO_SOCK_COMMON,     /* reg points to sock_common */
    PTR_TO_TCP_SOCK,     /* reg points to struct tcp_sock */
    PTR_TO_TP_BUFFER,     /* reg points to a writable raw tp's buffer */
    PTR_TO_XDP_SOCK,     /* reg points to struct xdp_sock */
    /* PTR_TO_BTF_ID points to a kernel struct that does not need
     * to be null checked by the BPF program. This does not imply the
     * pointer is _not_ null and in practice this can easily be a null
     * pointer when reading pointer chains. The assumption is program
     * context will handle null pointer dereference typically via fault
     * handling. The verifier must keep this in mind and can make no
     * assumptions about null or non-null when doing branch analysis.
     * Further, when passed into helpers the helpers can not, without
     * additional context, assume the value is non-null.
     */
    PTR_TO_BTF_ID,
    /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
     * been checked for null. Used primarily to inform the verifier
     * an explicit null check is required for this struct.
     */
    PTR_TO_MEM,         /* reg points to valid memory region */
    PTR_TO_BUF,         /* reg points to a read/write buffer */
    PTR_TO_FUNC,         /* reg points to a bpf program function */
    CONST_PTR_TO_DYNPTR,     /* reg points to a const struct bpf_dynptr */
    __BPF_REG_TYPE_MAX,

    /* Extended reg_types. */
    PTR_TO_MAP_VALUE_OR_NULL    = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
    PTR_TO_SOCKET_OR_NULL        = PTR_MAYBE_NULL | PTR_TO_SOCKET,
    PTR_TO_SOCK_COMMON_OR_NULL    = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
    PTR_TO_TCP_SOCK_OR_NULL        = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
    PTR_TO_BTF_ID_OR_NULL        = PTR_MAYBE_NULL | PTR_TO_BTF_ID,

    /* This must be the last entry. Its purpose is to ensure the enum is
     * wide enough to hold the higher bits reserved for bpf_type_flag.
     */
    __BPF_REG_TYPE_LIMIT    = BPF_TYPE_LIMIT,
};
static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);

/* The information passed from prog-specific *_is_valid_access
 * back to the verifier.
 */
struct bpf_insn_access_aux {
    enum bpf_reg_type reg_type;
    bool is_ldsx;
    union {
        int ctx_field_size;
        struct {
            struct btf *btf;
            u32 btf_id;
        };
    };
    struct bpf_verifier_log *log; /* for verbose logs */
    bool is_retval; /* is accessing function return value ? */
};

static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
{
    aux->ctx_field_size = size;
}

static bool bpf_is_ldimm64(const struct bpf_insn *insn)
{
    return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
}

static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
{
    return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
}

struct bpf_prog_ops {
    int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
            union bpf_attr __user *uattr);
};

struct bpf_reg_state;
struct bpf_verifier_ops {
    /* return eBPF function prototype for verification */
    const struct bpf_func_proto *
    (*get_func_proto)(enum bpf_func_id func_id,
              const struct bpf_prog *prog);

    /* return true if 'size' wide access at offset 'off' within bpf_context
     * with 'type' (read or write) is allowed
     */
    bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
                const struct bpf_prog *prog,
                struct bpf_insn_access_aux *info);
    int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
                const struct bpf_prog *prog);
    int (*gen_ld_abs)(const struct bpf_insn *orig,
              struct bpf_insn *insn_buf);
    u32 (*convert_ctx_access)(enum bpf_access_type type,
                  const struct bpf_insn *src,
                  struct bpf_insn *dst,
                  struct bpf_prog *prog, u32 *target_size);
    int (*btf_struct_access)(struct bpf_verifier_log *log,
                 const struct bpf_reg_state *reg,
                 int off, int size);
};

struct bpf_prog_offload_ops {
    /* verifier basic callbacks */
    int (*insn_hook)(struct bpf_verifier_env *env,
             int insn_idx, int prev_insn_idx);
    int (*finalize)(struct bpf_verifier_env *env);
    /* verifier optimization callbacks (called after .finalize) */
    int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
                struct bpf_insn *insn);
    int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
    /* program management callbacks */
    int (*prepare)(struct bpf_prog *prog);
    int (*translate)(struct bpf_prog *prog);
    void (*destroy)(struct bpf_prog *prog);
};

struct bpf_prog_offload {
    struct bpf_prog        *prog;
    struct net_device    *netdev;
    struct bpf_offload_dev    *offdev;
    void            *dev_priv;
    struct list_head    offloads;
    bool            dev_state;
    bool            opt_failed;
    void            *jited_image;
    u32            jited_len;
};

enum bpf_cgroup_storage_type {
    BPF_CGROUP_STORAGE_SHARED,
    BPF_CGROUP_STORAGE_PERCPU,
    __BPF_CGROUP_STORAGE_MAX
};

#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX

/* The longest tracepoint has 12 args.
 * See include/trace/bpf_probe.h
 */
#define MAX_BPF_FUNC_ARGS 12

/* The maximum number of arguments passed through registers
 * a single function may have.
 */
#define MAX_BPF_FUNC_REG_ARGS 5

/* The argument is a structure. */
#define BTF_FMODEL_STRUCT_ARG        BIT(0)

/* The argument is signed. */
#define BTF_FMODEL_SIGNED_ARG        BIT(1)

struct btf_func_model {
    u8 ret_size;
    u8 ret_flags;
    u8 nr_args;
    u8 arg_size[MAX_BPF_FUNC_ARGS];
    u8 arg_flags[MAX_BPF_FUNC_ARGS];
};

/* Restore arguments before returning from trampoline to let original function
 * continue executing. This flag is used for fentry progs when there are no
 * fexit progs.
 */
#define BPF_TRAMP_F_RESTORE_REGS    BIT(0)
/* Call original function after fentry progs, but before fexit progs.
 * Makes sense for fentry/fexit, normal calls and indirect calls.
 */
#define BPF_TRAMP_F_CALL_ORIG        BIT(1)
/* Skip current frame and return to parent.  Makes sense for fentry/fexit
 * programs only. Should not be used with normal calls and indirect calls.
 */
#define BPF_TRAMP_F_SKIP_FRAME        BIT(2)
/* Store IP address of the caller on the trampoline stack,
 * so it's available for trampoline's programs.
 */
#define BPF_TRAMP_F_IP_ARG        BIT(3)
/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
#define BPF_TRAMP_F_RET_FENTRY_RET    BIT(4)

/* Get original function from stack instead of from provided direct address.
 * Makes sense for trampolines with fexit or fmod_ret programs.
 */
#define BPF_TRAMP_F_ORIG_STACK        BIT(5)

/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
 */
#define BPF_TRAMP_F_SHARE_IPMODIFY    BIT(6)

/* Indicate that current trampoline is in a tail call context. Then, it has to
 * cache and restore tail_call_cnt to avoid infinite tail call loop.
 */
#define BPF_TRAMP_F_TAIL_CALL_CTX    BIT(7)

/*
 * Indicate the trampoline should be suitable to receive indirect calls;
 * without this indirectly calling the generated code can result in #UD/#CP,
 * depending on the CFI options.
 *
 * Used by bpf_struct_ops.
 *
 * Incompatible with FENTRY usage, overloads @func_addr argument.
 */
#define BPF_TRAMP_F_INDIRECT        BIT(8)

/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
 * bytes on x86.
 */
enum {
#if defined(__s390x__)
    BPF_MAX_TRAMP_LINKS = 27,
#else
    BPF_MAX_TRAMP_LINKS = 38,
#endif
};

struct bpf_tramp_links {
    struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
    int nr_links;
};

struct bpf_tramp_run_ctx;

/* Different use cases for BPF trampoline:
 * 1. replace nop at the function entry (kprobe equivalent)
 *    flags = BPF_TRAMP_F_RESTORE_REGS
 *    fentry = a set of programs to run before returning from trampoline
 *
 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
 *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
 *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
 *    fentry = a set of program to run before calling original function
 *    fexit = a set of program to run after original function
 *
 * 3. replace direct call instruction anywhere in the function body
 *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
 *    With flags = 0
 *      fentry = a set of programs to run before returning from trampoline
 *    With flags = BPF_TRAMP_F_CALL_ORIG
 *      orig_call = original callback addr or direct function addr
 *      fentry = a set of program to run before calling original function
 *      fexit = a set of program to run after original function
 */
struct bpf_tramp_image;
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
                const struct btf_func_model *m, u32 flags,
                struct bpf_tramp_links *tlinks,
                void *func_addr);
void *arch_alloc_bpf_trampoline(unsigned int size);
void arch_free_bpf_trampoline(void *image, unsigned int size);
void arch_protect_bpf_trampoline(void *image, unsigned int size);
void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
                 struct bpf_tramp_links *tlinks, void *func_addr);

u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
                         struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
                         struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
                      struct bpf_tramp_run_ctx *run_ctx);
typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
                      struct bpf_tramp_run_ctx *run_ctx);
bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);

struct bpf_ksym {
    unsigned long         start;
    unsigned long         end;
    char             name[KSYM_NAME_LEN];
    struct list_head     lnode;
    struct latch_tree_node     tnode;
    bool             prog;
};

enum bpf_tramp_prog_type {
    BPF_TRAMP_FENTRY,
    BPF_TRAMP_FEXIT,
    BPF_TRAMP_MODIFY_RETURN,
    BPF_TRAMP_MAX,
    BPF_TRAMP_REPLACE, /* more than MAX */
};

struct bpf_tramp_image {
    void *image;
    int size;
    struct bpf_ksym ksym;
    struct percpu_ref pcref;
    void *ip_after_call;
    void *ip_epilogue;
    union {
        struct rcu_head rcu;
        struct work_struct work;
    };
};

struct bpf_trampoline {
    /* hlist for trampoline_table */
    struct hlist_node hlist;
    struct ftrace_ops *fops;
    /* serializes access to fields of this trampoline */
    struct mutex mutex;
    refcount_t refcnt;
    u32 flags;
    u64 key;
    struct {
        struct btf_func_model model;
        void *addr;
        bool ftrace_managed;
    } func;
    /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
     * program by replacing one of its functions. func.addr is the address
     * of the function it replaced.
     */
    struct bpf_prog *extension_prog;
    /* list of BPF programs using this trampoline */
    struct hlist_head progs_hlist[BPF_TRAMP_MAX];
    /* Number of attached programs. A counter per kind. */
    int progs_cnt[BPF_TRAMP_MAX];
    /* Executable image of trampoline */
    struct bpf_tramp_image *cur_image;
    struct module *mod;
};

struct bpf_attach_target_info {
    struct btf_func_model fmodel;
    long tgt_addr;
    struct module *tgt_mod;
    const char *tgt_name;
    const struct btf_type *tgt_type;
};

#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */

struct bpf_dispatcher_prog {
    struct bpf_prog *prog;
    refcount_t users;
};

struct bpf_dispatcher {
    /* dispatcher mutex */
    struct mutex mutex;
    void *func;
    struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
    int num_progs;
    void *image;
    void *rw_image;
    u32 image_off;
    struct bpf_ksym ksym;
#ifdef CONFIG_HAVE_STATIC_CALL
    struct static_call_key *sc_key;
    void *sc_tramp;
#endif
};

#ifndef __bpfcall
#define __bpfcall __nocfi
#endif

static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
    const void *ctx,
    const struct bpf_insn *insnsi,
    bpf_func_t bpf_func)
{
    return bpf_func(ctx, insnsi);
}

/* the implementation of the opaque uapi struct bpf_dynptr */
struct bpf_dynptr_kern {
    void *data;
    /* Size represents the number of usable bytes of dynptr data.
     * If for example the offset is at 4 for a local dynptr whose data is
     * of type u64, the number of usable bytes is 4.
     *
     * The upper 8 bits are reserved. It is as follows:
     * Bits 0 - 23 = size
     * Bits 24 - 30 = dynptr type
     * Bit 31 = whether dynptr is read-only
     */
    u32 size;
    u32 offset;
} __aligned(8);

enum bpf_dynptr_type {
    BPF_DYNPTR_TYPE_INVALID,
    /* Points to memory that is local to the bpf program */
    BPF_DYNPTR_TYPE_LOCAL,
    /* Underlying data is a ringbuf record */
    BPF_DYNPTR_TYPE_RINGBUF,
    /* Underlying data is a sk_buff */
    BPF_DYNPTR_TYPE_SKB,
    /* Underlying data is a xdp_buff */
    BPF_DYNPTR_TYPE_XDP,
};

int bpf_dynptr_check_size(u32 size);
u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);

#ifdef CONFIG_BPF_JIT
int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
                 struct bpf_trampoline *tr,
                 struct bpf_prog *tgt_prog);
int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
                   struct bpf_trampoline *tr,
                   struct bpf_prog *tgt_prog);
struct bpf_trampoline *bpf_trampoline_get(u64 key,
                      struct bpf_attach_target_info *tgt_info);
void bpf_trampoline_put(struct bpf_trampoline *tr);
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);

/*
 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
 * indirection with a direct call to the bpf program. If the architecture does
 * not have STATIC_CALL, avoid a double-indirection.
 */
#ifdef CONFIG_HAVE_STATIC_CALL

#define __BPF_DISPATCHER_SC_INIT(_name)                \
    .sc_key = &STATIC_CALL_KEY(_name),            \
    .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),

#define __BPF_DISPATCHER_SC(name)                \
    DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)

#define __BPF_DISPATCHER_CALL(name)                \
    static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)

#define __BPF_DISPATCHER_UPDATE(_d, _new)            \
    __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))

#else
#define __BPF_DISPATCHER_SC_INIT(name)
#define __BPF_DISPATCHER_SC(name)
#define __BPF_DISPATCHER_CALL(name)        bpf_func(ctx, insnsi)
#define __BPF_DISPATCHER_UPDATE(_d, _new)
#endif

#define BPF_DISPATCHER_INIT(_name) {                \
    .mutex = __MUTEX_INITIALIZER(_name.mutex),        \
    .func = &_name##_func,                    \
    .progs = {},                        \
    .num_progs = 0,                        \
    .image = NULL,                        \
    .image_off = 0,                        \
    .ksym = {                        \
        .name  = #_name,                \
        .lnode = LIST_HEAD_INIT(_name.ksym.lnode),    \
    },                            \
    __BPF_DISPATCHER_SC_INIT(_name##_call)            \
}

#define DEFINE_BPF_DISPATCHER(name)                    \
    __BPF_DISPATCHER_SC(name);                    \
    noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(    \
        const void *ctx,                    \
        const struct bpf_insn *insnsi,                \
        bpf_func_t bpf_func)                    \
    {                                \
        return __BPF_DISPATCHER_CALL(name);            \
    }                                \
    EXPORT_SYMBOL(bpf_dispatcher_##name##_func);            \
    struct bpf_dispatcher bpf_dispatcher_##name =            \
        BPF_DISPATCHER_INIT(bpf_dispatcher_##name);

#define DECLARE_BPF_DISPATCHER(name)                    \
    unsigned int bpf_dispatcher_##name##_func(            \
        const void *ctx,                    \
        const struct bpf_insn *insnsi,                \
        bpf_func_t bpf_func);                    \
    extern struct bpf_dispatcher bpf_dispatcher_##name;

#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
                struct bpf_prog *to);
/* Called only from JIT-enabled code, so there's no need for stubs. */
void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
void bpf_image_ksym_del(struct bpf_ksym *ksym);
void bpf_ksym_add(struct bpf_ksym *ksym);
void bpf_ksym_del(struct bpf_ksym *ksym);
int bpf_jit_charge_modmem(u32 size);
void bpf_jit_uncharge_modmem(u32 size);
bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
                       struct bpf_trampoline *tr,
                       struct bpf_prog *tgt_prog)
{
    return -ENOTSUPP;
}
static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
                         struct bpf_trampoline *tr,
                         struct bpf_prog *tgt_prog)
{
    return -ENOTSUPP;
}
static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
                            struct bpf_attach_target_info *tgt_info)
{
    return NULL;
}
static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
#define DEFINE_BPF_DISPATCHER(name)
#define DECLARE_BPF_DISPATCHER(name)
#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
#define BPF_DISPATCHER_PTR(name) NULL
static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
                          struct bpf_prog *from,
                          struct bpf_prog *to) {}
static inline bool is_bpf_image_address(unsigned long address)
{
    return false;
}
static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
{
    return false;
}
#endif

struct bpf_func_info_aux {
    u16 linkage;
    bool unreliable;
    bool called : 1;
    bool verified : 1;
};

enum bpf_jit_poke_reason {
    BPF_POKE_REASON_TAIL_CALL,
};

/* Descriptor of pokes pointing /into/ the JITed image. */
struct bpf_jit_poke_descriptor {
    void *tailcall_target;
    void *tailcall_bypass;
    void *bypass_addr;
    void *aux;
    union {
        struct {
            struct bpf_map *map;
            u32 key;
        } tail_call;
    };
    bool tailcall_target_stable;
    u8 adj_off;
    u16 reason;
    u32 insn_idx;
};

/* reg_type info for ctx arguments */
struct bpf_ctx_arg_aux {
    u32 offset;
    enum bpf_reg_type reg_type;
    u32 btf_id;
};

struct btf_mod_pair {
    struct btf *btf;
    struct module *module;
};

struct bpf_kfunc_desc_tab;

struct bpf_prog_aux {
    atomic64_t refcnt;
    u32 used_map_cnt;
    u32 used_btf_cnt;
    u32 max_ctx_offset;
    u32 max_pkt_offset;
    u32 max_tp_access;
    u32 stack_depth;
    u32 id;
    u32 func_cnt; /* used by non-func prog as the number of func progs */
    u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
    u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
    u32 attach_btf_id; /* in-kernel BTF type id to attach to */
    u32 ctx_arg_info_size;
    u32 max_rdonly_access;
    u32 max_rdwr_access;
    struct btf *attach_btf;
    const struct bpf_ctx_arg_aux *ctx_arg_info;
    struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
    struct bpf_prog *dst_prog;
    struct bpf_trampoline *dst_trampoline;
    enum bpf_prog_type saved_dst_prog_type;
    enum bpf_attach_type saved_dst_attach_type;
    bool verifier_zext; /* Zero extensions has been inserted by verifier. */
    bool dev_bound; /* Program is bound to the netdev. */
    bool offload_requested; /* Program is bound and offloaded to the netdev. */
    bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
    bool attach_tracing_prog; /* true if tracing another tracing program */
    bool func_proto_unreliable;
    bool sleepable;
    bool tail_call_reachable;
    bool xdp_has_frags;
    bool exception_cb;
    bool exception_boundary;
    bool is_extended; /* true if extended by freplace program */
    u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
    struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
    /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
    const struct btf_type *attach_func_proto;
    /* function name for valid attach_btf_id */
    const char *attach_func_name;
    struct bpf_prog **func;
    void *jit_data; /* JIT specific data. arch dependent */
    struct bpf_jit_poke_descriptor *poke_tab;
    struct bpf_kfunc_desc_tab *kfunc_tab;
    struct bpf_kfunc_btf_tab *kfunc_btf_tab;
    u32 size_poke_tab;
#ifdef CONFIG_FINEIBT
    struct bpf_ksym ksym_prefix;
#endif
    struct bpf_ksym ksym;
    const struct bpf_prog_ops *ops;
    struct bpf_map **used_maps;
    struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
    struct btf_mod_pair *used_btfs;
    struct bpf_prog *prog;
    struct user_struct *user;
    u64 load_time; /* ns since boottime */
    u32 verified_insns;
    int cgroup_atype; /* enum cgroup_bpf_attach_type */
    struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
    char name[BPF_OBJ_NAME_LEN];
    u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
#ifdef CONFIG_SECURITY
    void *security;
#endif
    struct bpf_prog_offload *offload;
    struct btf *btf;
    struct bpf_func_info *func_info;
    struct bpf_func_info_aux *func_info_aux;
    /* bpf_line_info loaded from userspace.  linfo->insn_off
     * has the xlated insn offset.
     * Both the main and sub prog share the same linfo.
     * The subprog can access its first linfo by
     * using the linfo_idx.
     */
    struct bpf_line_info *linfo;
    /* jited_linfo is the jited addr of the linfo.  It has a
     * one to one mapping to linfo:
     * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
     * Both the main and sub prog share the same jited_linfo.
     * The subprog can access its first jited_linfo by
     * using the linfo_idx.
     */
    void **jited_linfo;
    u32 func_info_cnt;
    u32 nr_linfo;
    /* subprog can use linfo_idx to access its first linfo and
     * jited_linfo.
     * main prog always has linfo_idx == 0
     */
    u32 linfo_idx;
    struct module *mod;
    u32 num_exentries;
    struct exception_table_entry *extable;
    union {
        struct work_struct work;
        struct rcu_head    rcu;
    };
};

struct bpf_prog {
    u16            pages;        /* Number of allocated pages */
    u16            jited:1,    /* Is our filter JIT'ed? */
                jit_requested:1,/* archs need to JIT the prog */
                gpl_compatible:1, /* Is filter GPL compatible? */
                cb_access:1,    /* Is control block accessed? */
                dst_needed:1,    /* Do we need dst entry? */
                blinding_requested:1, /* needs constant blinding */
                blinded:1,    /* Was blinded */
                is_func:1,    /* program is a bpf function */
                kprobe_override:1, /* Do we override a kprobe? */
                has_callchain_buf:1, /* callchain buffer allocated? */
                enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
                call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
                call_get_func_ip:1, /* Do we call get_func_ip() */
                tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
    enum bpf_prog_type    type;        /* Type of BPF program */
    enum bpf_attach_type    expected_attach_type; /* For some prog types */
    u32            len;        /* Number of filter blocks */
    u32            jited_len;    /* Size of jited insns in bytes */
    u8            tag[BPF_TAG_SIZE];
    struct bpf_prog_stats __percpu *stats;
    int __percpu        *active;
    unsigned int        (*bpf_func)(const void *ctx,
                        const struct bpf_insn *insn);
    struct bpf_prog_aux    *aux;        /* Auxiliary fields */
    struct sock_fprog_kern    *orig_prog;    /* Original BPF program */
    /* Instructions for interpreter */
    union {
        DECLARE_FLEX_ARRAY(struct sock_filter, insns);
        DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
    };
};

struct bpf_array_aux {
    /* Programs with direct jumps into programs part of this array. */
    struct list_head poke_progs;
    struct bpf_map *map;
    struct mutex poke_mutex;
    struct work_struct work;
};

struct bpf_link {
    atomic64_t refcnt;
    u32 id;
    enum bpf_link_type type;
    const struct bpf_link_ops *ops;
    struct bpf_prog *prog;
    /* rcu is used before freeing, work can be used to schedule that
     * RCU-based freeing before that, so they never overlap
     */
    union {
        struct rcu_head rcu;
        struct work_struct work;
    };
};

struct bpf_link_ops {
    void (*release)(struct bpf_link *link);
    /* deallocate link resources callback, called without RCU grace period
     * waiting
     */
    void (*dealloc)(struct bpf_link *link);
    /* deallocate link resources callback, called after RCU grace period;
     * if underlying BPF program is sleepable we go through tasks trace
     * RCU GP and then "classic" RCU GP
     */
    void (*dealloc_deferred)(struct bpf_link *link);
    int (*detach)(struct bpf_link *link);
    int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
               struct bpf_prog *old_prog);
    void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
    int (*fill_link_info)(const struct bpf_link *link,
                  struct bpf_link_info *info);
    int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
              struct bpf_map *old_map);
};

struct bpf_tramp_link {
    struct bpf_link link;
    struct hlist_node tramp_hlist;
    u64 cookie;
};

struct bpf_shim_tramp_link {
    struct bpf_tramp_link link;
    struct bpf_trampoline *trampoline;
};

struct bpf_tracing_link {
    struct bpf_tramp_link link;
    enum bpf_attach_type attach_type;
    struct bpf_trampoline *trampoline;
    struct bpf_prog *tgt_prog;
};

struct bpf_link_primer {
    struct bpf_link *link;
    struct file *file;
    int fd;
    u32 id;
};

struct bpf_struct_ops_value;
struct btf_member;

#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
/**
 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
 *               define a BPF_MAP_TYPE_STRUCT_OPS map type composed
 *               of BPF_PROG_TYPE_STRUCT_OPS progs.
 * @verifier_ops: A structure of callbacks that are invoked by the verifier
 *          when determining whether the struct_ops progs in the
 *          struct_ops map are valid.
 * @init: A callback that is invoked a single time, and before any other
 *      callback, to initialize the structure. A nonzero return value means
 *      the subsystem could not be initialized.
 * @check_member: When defined, a callback invoked by the verifier to allow
 *          the subsystem to determine if an entry in the struct_ops map
 *          is valid. A nonzero return value means that the map is
 *          invalid and should be rejected by the verifier.
 * @init_member: A callback that is invoked for each member of the struct_ops
 *         map to allow the subsystem to initialize the member. A nonzero
 *         value means the member could not be initialized. This callback
 *         is exclusive with the @type, @type_id, @value_type, and
 *         @value_id fields.
 * @reg: A callback that is invoked when the struct_ops map has been
 *     initialized and is being attached to. Zero means the struct_ops map
 *     has been successfully registered and is live. A nonzero return value
 *     means the struct_ops map could not be registered.
 * @unreg: A callback that is invoked when the struct_ops map should be
 *       unregistered.
 * @update: A callback that is invoked when the live struct_ops map is being
 *        updated to contain new values. This callback is only invoked when
 *        the struct_ops map is loaded with BPF_F_LINK. If not defined, the
 *        it is assumed that the struct_ops map cannot be updated.
 * @validate: A callback that is invoked after all of the members have been
 *          initialized. This callback should perform static checks on the
 *          map, meaning that it should either fail or succeed
 *          deterministically. A struct_ops map that has been validated may
 *          not necessarily succeed in being registered if the call to @reg
 *          fails. For example, a valid struct_ops map may be loaded, but
 *          then fail to be registered due to there being another active
 *          struct_ops map on the system in the subsystem already. For this
 *          reason, if this callback is not defined, the check is skipped as
 *          the struct_ops map will have final verification performed in
 *          @reg.
 * @type: BTF type.
 * @value_type: Value type.
 * @name: The name of the struct bpf_struct_ops object.
 * @func_models: Func models
 * @type_id: BTF type id.
 * @value_id: BTF value id.
 */
struct bpf_struct_ops {
    const struct bpf_verifier_ops *verifier_ops;
    int (*init)(struct btf *btf);
    int (*check_member)(const struct btf_type *t,
                const struct btf_member *member,
                const struct bpf_prog *prog);
    int (*init_member)(const struct btf_type *t,
               const struct btf_member *member,
               void *kdata, const void *udata);
    int (*reg)(void *kdata);
    void (*unreg)(void *kdata);
    int (*update)(void *kdata, void *old_kdata);
    int (*validate)(void *kdata);
    const struct btf_type *type;
    const struct btf_type *value_type;
    const char *name;
    struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
    u32 type_id;
    u32 value_id;
    void *cfi_stubs;
};

#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
bool bpf_struct_ops_get(const void *kdata);
void bpf_struct_ops_put(const void *kdata);
int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
                       void *value);
int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
                      struct bpf_tramp_link *link,
                      const struct btf_func_model *model,
                      void *stub_func,
                      void *image, void *image_end);
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
    if (owner == BPF_MODULE_OWNER)
        return bpf_struct_ops_get(data);
    else
        return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
    if (owner == BPF_MODULE_OWNER)
        bpf_struct_ops_put(data);
    else
        module_put(owner);
}
int bpf_struct_ops_link_create(union bpf_attr *attr);

#ifdef CONFIG_NET
/* Define it here to avoid the use of forward declaration */
struct bpf_dummy_ops_state {
    int val;
};

struct bpf_dummy_ops {
    int (*test_1)(struct bpf_dummy_ops_state *cb);
    int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
              char a3, unsigned long a4);
    int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
};

int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
                union bpf_attr __user *uattr);
#endif
#else
static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
{
    return NULL;
}
static inline void bpf_struct_ops_init(struct btf *btf,
                       struct bpf_verifier_log *log)
{
}
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
    return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
    module_put(owner);
}
static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
                             void *key,
                             void *value)
{
    return -EINVAL;
}
static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
{
    return -EOPNOTSUPP;
}

#endif

#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
                    int cgroup_atype);
void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
                          int cgroup_atype)
{
    return -EOPNOTSUPP;
}
static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
{
}
#endif

struct bpf_array {
    struct bpf_map map;
    u32 elem_size;
    u32 index_mask;
    struct bpf_array_aux *aux;
    union {
        DECLARE_FLEX_ARRAY(char, value) __aligned(8);
        DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
        DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
    };
};

#define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
#define MAX_TAIL_CALL_CNT 33

/* Maximum number of loops for bpf_loop and bpf_iter_num.
 * It's enum to expose it (and thus make it discoverable) through BTF.
 */
enum {
    BPF_MAX_LOOPS = 8 * 1024 * 1024,
};

#define BPF_F_ACCESS_MASK    (BPF_F_RDONLY |        \
                 BPF_F_RDONLY_PROG |    \
                 BPF_F_WRONLY |        \
                 BPF_F_WRONLY_PROG)

#define BPF_MAP_CAN_READ    BIT(0)
#define BPF_MAP_CAN_WRITE    BIT(1)

/* Maximum number of user-producer ring buffer samples that can be drained in
 * a call to bpf_user_ringbuf_drain().
 */
#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)

static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
{
    u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);

    /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
     * not possible.
     */
    if (access_flags & BPF_F_RDONLY_PROG)
        return BPF_MAP_CAN_READ;
    else if (access_flags & BPF_F_WRONLY_PROG)
        return BPF_MAP_CAN_WRITE;
    else
        return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
}

static inline bool bpf_map_flags_access_ok(u32 access_flags)
{
    return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
           (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
}

struct bpf_event_entry {
    struct perf_event *event;
    struct file *perf_file;
    struct file *map_file;
    struct rcu_head rcu;
};

static inline bool map_type_contains_progs(struct bpf_map *map)
{
    return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
           map->map_type == BPF_MAP_TYPE_DEVMAP ||
           map->map_type == BPF_MAP_TYPE_CPUMAP;
}

bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
int bpf_prog_calc_tag(struct bpf_prog *fp);

const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);

typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
                    unsigned long off, unsigned long len);
typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
                    const struct bpf_insn *src,
                    struct bpf_insn *dst,
                    struct bpf_prog *prog,
                    u32 *target_size);

u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
             void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);

/* an array of programs to be executed under rcu_lock.
 *
 * Typical usage:
 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
 *
 * the structure returned by bpf_prog_array_alloc() should be populated
 * with program pointers and the last pointer must be NULL.
 * The user has to keep refcnt on the program and make sure the program
 * is removed from the array before bpf_prog_put().
 * The 'struct bpf_prog_array *' should only be replaced with xchg()
 * since other cpus are walking the array of pointers in parallel.
 */
struct bpf_prog_array_item {
    struct bpf_prog *prog;
    union {
        struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
        u64 bpf_cookie;
    };
};

struct bpf_prog_array {
    struct rcu_head rcu;
    struct bpf_prog_array_item items[];
};

struct bpf_empty_prog_array {
    struct bpf_prog_array hdr;
    struct bpf_prog *null_prog;
};

/* to avoid allocating empty bpf_prog_array for cgroups that
 * don't have bpf program attached use one global 'bpf_empty_prog_array'
 * It will not be modified the caller of bpf_prog_array_alloc()
 * (since caller requested prog_cnt == 0)
 * that pointer should be 'freed' by bpf_prog_array_free()
 */
extern struct bpf_empty_prog_array bpf_empty_prog_array;

struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
void bpf_prog_array_free(struct bpf_prog_array *progs);
/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
int bpf_prog_array_length(struct bpf_prog_array *progs);
bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
                __u32 __user *prog_ids, u32 cnt);

void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
                struct bpf_prog *old_prog);
int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
                 struct bpf_prog *prog);
int bpf_prog_array_copy_info(struct bpf_prog_array *array,
                 u32 *prog_ids, u32 request_cnt,
                 u32 *prog_cnt);
int bpf_prog_array_copy(struct bpf_prog_array *old_array,
            struct bpf_prog *exclude_prog,
            struct bpf_prog *include_prog,
            u64 bpf_cookie,
            struct bpf_prog_array **new_array);

struct bpf_run_ctx {};

struct bpf_cg_run_ctx {
    struct bpf_run_ctx run_ctx;
    const struct bpf_prog_array_item *prog_item;
    int retval;
};

struct bpf_trace_run_ctx {
    struct bpf_run_ctx run_ctx;
    u64 bpf_cookie;
    bool is_uprobe;
};

struct bpf_tramp_run_ctx {
    struct bpf_run_ctx run_ctx;
    u64 bpf_cookie;
    struct bpf_run_ctx *saved_run_ctx;
};

static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
{
    struct bpf_run_ctx *old_ctx = NULL;

#ifdef CONFIG_BPF_SYSCALL
    old_ctx = current->bpf_ctx;
    current->bpf_ctx = new_ctx;
#endif
    return old_ctx;
}

static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
{
#ifdef CONFIG_BPF_SYSCALL
    current->bpf_ctx = old_ctx;
#endif
}

/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE            (1 << 0)
/* BPF program asks to set CN on the packet. */
#define BPF_RET_SET_CN                        (1 << 0)

typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);

static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array *array,
           const void *ctx, bpf_prog_run_fn run_prog)
{
    const struct bpf_prog_array_item *item;
    const struct bpf_prog *prog;
    struct bpf_run_ctx *old_run_ctx;
    struct bpf_trace_run_ctx run_ctx;
    u32 ret = 1;

    RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");

    if (unlikely(!array))
        return ret;

    run_ctx.is_uprobe = false;

    migrate_disable();
    old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
    item = &array->items[0];
    while ((prog = READ_ONCE(item->prog))) {
        run_ctx.bpf_cookie = item->bpf_cookie;
        ret &= run_prog(prog, ctx);
        item++;
    }
    bpf_reset_run_ctx(old_run_ctx);
    migrate_enable();
    return ret;
}

/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
 *
 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
 * overall. As a result, we must use the bpf_prog_array_free_sleepable
 * in order to use the tasks_trace rcu grace period.
 *
 * When a non-sleepable program is inside the array, we take the rcu read
 * section and disable preemption for that program alone, so it can access
 * rcu-protected dynamically sized maps.
 */
static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
              const void *ctx, bpf_prog_run_fn run_prog)
{
    const struct bpf_prog_array_item *item;
    const struct bpf_prog *prog;
    struct bpf_run_ctx *old_run_ctx;
    struct bpf_trace_run_ctx run_ctx;
    u32 ret = 1;

    might_fault();
    RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");

    if (unlikely(!array))
        return ret;

    migrate_disable();

    run_ctx.is_uprobe = true;

    old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
    item = &array->items[0];
    while ((prog = READ_ONCE(item->prog))) {
        if (!prog->aux->sleepable)
            rcu_read_lock();

        run_ctx.bpf_cookie = item->bpf_cookie;
        ret &= run_prog(prog, ctx);
        item++;

        if (!prog->aux->sleepable)
            rcu_read_unlock();
    }
    bpf_reset_run_ctx(old_run_ctx);
    migrate_enable();
    return ret;
}

#ifdef CONFIG_BPF_SYSCALL
DECLARE_PER_CPU(int, bpf_prog_active);
extern struct mutex bpf_stats_enabled_mutex;

/*
 * Block execution of BPF programs attached to instrumentation (perf,
 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
 * these events can happen inside a region which holds a map bucket lock
 * and can deadlock on it.
 */
static inline void bpf_disable_instrumentation(void)
{
    migrate_disable();
    this_cpu_inc(bpf_prog_active);
}

static inline void bpf_enable_instrumentation(void)
{
    this_cpu_dec(bpf_prog_active);
    migrate_enable();
}

extern const struct file_operations bpf_map_fops;
extern const struct file_operations bpf_prog_fops;
extern const struct file_operations bpf_iter_fops;

#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
    extern const struct bpf_prog_ops _name ## _prog_ops; \
    extern const struct bpf_verifier_ops _name ## _verifier_ops;
#define BPF_MAP_TYPE(_id, _ops) \
    extern const struct bpf_map_ops _ops;
#define BPF_LINK_TYPE(_id, _name)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE

extern const struct bpf_prog_ops bpf_offload_prog_ops;
extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
extern const struct bpf_verifier_ops xdp_analyzer_ops;

struct bpf_prog *bpf_prog_get(u32 ufd);
struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
                       bool attach_drv);
void bpf_prog_add(struct bpf_prog *prog, int i);
void bpf_prog_sub(struct bpf_prog *prog, int i);
void bpf_prog_inc(struct bpf_prog *prog);
struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
void bpf_prog_put(struct bpf_prog *prog);

void bpf_prog_free_id(struct bpf_prog *prog);
void bpf_map_free_id(struct bpf_map *map);

struct btf_field *btf_record_find(const struct btf_record *rec,
                  u32 offset, u32 field_mask);
void btf_record_free(struct btf_record *rec);
void bpf_map_free_record(struct bpf_map *map);
struct btf_record *btf_record_dup(const struct btf_record *rec);
bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);

struct bpf_map *bpf_map_get(u32 ufd);
struct bpf_map *bpf_map_get_with_uref(u32 ufd);
struct bpf_map *__bpf_map_get(struct fd f);
void bpf_map_inc(struct bpf_map *map);
void bpf_map_inc_with_uref(struct bpf_map *map);
struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
void bpf_map_put_with_uref(struct bpf_map *map);
void bpf_map_put(struct bpf_map *map);
void *bpf_map_area_alloc(u64 size, int numa_node);
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
void bpf_map_area_free(void *base);
bool bpf_map_write_active(const struct bpf_map *map);
void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
int  generic_map_lookup_batch(struct bpf_map *map,
                  const union bpf_attr *attr,
                  union bpf_attr __user *uattr);
int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
                  const union bpf_attr *attr,
                  union bpf_attr __user *uattr);
int  generic_map_delete_batch(struct bpf_map *map,
                  const union bpf_attr *attr,
                  union bpf_attr __user *uattr);
struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);

#ifdef CONFIG_MEMCG_KMEM
void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
               int node);
void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
               gfp_t flags);
void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
                    size_t align, gfp_t flags);
#else
static inline void *
bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
             int node)
{
    return kmalloc_node(size, flags, node);
}

static inline void *
bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
{
    return kzalloc(size, flags);
}

static inline void *
bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
{
    return kvcalloc(n, size, flags);
}

static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
             gfp_t flags)
{
    return __alloc_percpu_gfp(size, align, flags);
}
#endif

static inline int
bpf_map_init_elem_count(struct bpf_map *map)
{
    size_t size = sizeof(*map->elem_count), align = size;
    gfp_t flags = GFP_USER | __GFP_NOWARN;

    map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
    if (!map->elem_count)
        return -ENOMEM;

    return 0;
}

static inline void
bpf_map_free_elem_count(struct bpf_map *map)
{
    free_percpu(map->elem_count);
}

static inline void bpf_map_inc_elem_count(struct bpf_map *map)
{
    this_cpu_inc(*map->elem_count);
}

static inline void bpf_map_dec_elem_count(struct bpf_map *map)
{
    this_cpu_dec(*map->elem_count);
}

extern int sysctl_unprivileged_bpf_disabled;

static inline bool bpf_allow_ptr_leaks(void)
{
    return perfmon_capable();
}

static inline bool bpf_allow_uninit_stack(void)
{
    return perfmon_capable();
}

static inline bool bpf_bypass_spec_v1(void)
{
    return cpu_mitigations_off() || perfmon_capable();
}

static inline bool bpf_bypass_spec_v4(void)
{
    return cpu_mitigations_off() || perfmon_capable();
}

int bpf_map_new_fd(struct bpf_map *map, int flags);
int bpf_prog_new_fd(struct bpf_prog *prog);

void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
           const struct bpf_link_ops *ops, struct bpf_prog *prog);
int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
int bpf_link_settle(struct bpf_link_primer *primer);
void bpf_link_cleanup(struct bpf_link_primer *primer);
void bpf_link_inc(struct bpf_link *link);
void bpf_link_put(struct bpf_link *link);
int bpf_link_new_fd(struct bpf_link *link);
struct bpf_link *bpf_link_get_from_fd(u32 ufd);
struct bpf_link *bpf_link_get_curr_or_next(u32 *id);

int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);

#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
#define DEFINE_BPF_ITER_FUNC(target, args...)            \
    extern int bpf_iter_ ## target(args);            \
    int __init bpf_iter_ ## target(args) { return 0; }

/*
 * The task type of iterators.
 *
 * For BPF task iterators, they can be parameterized with various
 * parameters to visit only some of tasks.
 *
 * BPF_TASK_ITER_ALL (default)
 *    Iterate over resources of every task.
 *
 * BPF_TASK_ITER_TID
 *    Iterate over resources of a task/tid.
 *
 * BPF_TASK_ITER_TGID
 *    Iterate over resources of every task of a process / task group.
 */
enum bpf_iter_task_type {
    BPF_TASK_ITER_ALL = 0,
    BPF_TASK_ITER_TID,
    BPF_TASK_ITER_TGID,
};

struct bpf_iter_aux_info {
    /* for map_elem iter */
    struct bpf_map *map;

    /* for cgroup iter */
    struct {
        struct cgroup *start; /* starting cgroup */
        enum bpf_cgroup_iter_order order;
    } cgroup;
    struct {
        enum bpf_iter_task_type    type;
        u32 pid;
    } task;
};

typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
                    union bpf_iter_link_info *linfo,
                    struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
                    struct seq_file *seq);
typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
                     struct bpf_link_info *info);
typedef const struct bpf_func_proto *
(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
                 const struct bpf_prog *prog);

enum bpf_iter_feature {
    BPF_ITER_RESCHED    = BIT(0),
};

#define BPF_ITER_CTX_ARG_MAX 2
struct bpf_iter_reg {
    const char *target;
    bpf_iter_attach_target_t attach_target;
    bpf_iter_detach_target_t detach_target;
    bpf_iter_show_fdinfo_t show_fdinfo;
    bpf_iter_fill_link_info_t fill_link_info;
    bpf_iter_get_func_proto_t get_func_proto;
    u32 ctx_arg_info_size;
    u32 feature;
    struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
    const struct bpf_iter_seq_info *seq_info;
};

struct bpf_iter_meta {
    __bpf_md_ptr(struct seq_file *, seq);
    u64 session_id;
    u64 seq_num;
};

struct bpf_iter__bpf_map_elem {
    __bpf_md_ptr(struct bpf_iter_meta *, meta);
    __bpf_md_ptr(struct bpf_map *, map);
    __bpf_md_ptr(void *, key);
    __bpf_md_ptr(void *, value);
};

int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
bool bpf_iter_prog_supported(struct bpf_prog *prog);
const struct bpf_func_proto *
bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
int bpf_iter_new_fd(struct bpf_link *link);
bool bpf_link_is_iter(struct bpf_link *link);
struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
                  struct seq_file *seq);
int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
                struct bpf_link_info *info);

int map_set_for_each_callback_args(struct bpf_verifier_env *env,
                   struct bpf_func_state *caller,
                   struct bpf_func_state *callee);

int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
               u64 flags);
int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
                u64 flags);

int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);

int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
                 void *key, void *value, u64 map_flags);
int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
                void *key, void *value, u64 map_flags);
int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);

int bpf_get_file_flag(int flags);
int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
                 size_t actual_size);

/* verify correctness of eBPF program */
int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);

#ifndef CONFIG_BPF_JIT_ALWAYS_ON
void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
#endif

struct btf *bpf_get_btf_vmlinux(void);

/* Map specifics */
struct xdp_frame;
struct sk_buff;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;

void __dev_flush(void);
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
            struct net_device *dev_rx);
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
            struct net_device *dev_rx);
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
              struct bpf_map *map, bool exclude_ingress);
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
                 struct bpf_prog *xdp_prog);
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
               struct bpf_prog *xdp_prog, struct bpf_map *map,
               bool exclude_ingress);

void __cpu_map_flush(void);
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
            struct net_device *dev_rx);
int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
                 struct sk_buff *skb);

/* Return map's numa specified by userspace */
static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
{
    return (attr->map_flags & BPF_F_NUMA_NODE) ?
        attr->numa_node : NUMA_NO_NODE;
}

struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
int array_map_alloc_check(union bpf_attr *attr);

int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
              union bpf_attr __user *uattr);
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
              union bpf_attr __user *uattr);
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
                  const union bpf_attr *kattr,
                  union bpf_attr __user *uattr);
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
                     const union bpf_attr *kattr,
                     union bpf_attr __user *uattr);
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
                 const union bpf_attr *kattr,
                 union bpf_attr __user *uattr);
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
                const union bpf_attr *kattr,
                union bpf_attr __user *uattr);
int bpf_prog_test_run_nf(struct bpf_prog *prog,
             const union bpf_attr *kattr,
             union bpf_attr __user *uattr);
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
            const struct bpf_prog *prog,
            struct bpf_insn_access_aux *info);

static inline bool bpf_tracing_ctx_access(int off, int size,
                      enum bpf_access_type type)
{
    if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
        return false;
    if (type != BPF_READ)
        return false;
    if (off % size != 0)
        return false;
    return true;
}

static inline bool bpf_tracing_btf_ctx_access(int off, int size,
                          enum bpf_access_type type,
                          const struct bpf_prog *prog,
                          struct bpf_insn_access_aux *info)
{
    if (!bpf_tracing_ctx_access(off, size, type))
        return false;
    return btf_ctx_access(off, size, type, prog, info);
}

int btf_struct_access(struct bpf_verifier_log *log,
              const struct bpf_reg_state *reg,
              int off, int size, enum bpf_access_type atype,
              u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
bool btf_struct_ids_match(struct bpf_verifier_log *log,
              const struct btf *btf, u32 id, int off,
              const struct btf *need_btf, u32 need_type_id,
              bool strict);

int btf_distill_func_proto(struct bpf_verifier_log *log,
               struct btf *btf,
               const struct btf_type *func_proto,
               const char *func_name,
               struct btf_func_model *m);

struct bpf_reg_state;
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
             struct btf *btf, const struct btf_type *t);
const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
                    int comp_idx, const char *tag_key);

struct bpf_prog *bpf_prog_by_id(u32 id);
struct bpf_link *bpf_link_by_id(u32 id);

const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
void bpf_task_storage_free(struct task_struct *task);
void bpf_cgrp_storage_free(struct cgroup *cgroup);
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
             const struct bpf_insn *insn);
int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
               u16 btf_fd_idx, u8 **func_addr);

struct bpf_core_ctx {
    struct bpf_verifier_log *log;
    const struct btf *btf;
};

bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
                const struct bpf_reg_state *reg,
                const char *field_name, u32 btf_id, const char *suffix);

bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
                   const struct btf *reg_btf, u32 reg_id,
                   const struct btf *arg_btf, u32 arg_id);

int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
           int relo_idx, void *insn);

static inline bool unprivileged_ebpf_enabled(void)
{
    return !sysctl_unprivileged_bpf_disabled;
}

/* Not all bpf prog type has the bpf_ctx.
 * For the bpf prog type that has initialized the bpf_ctx,
 * this function can be used to decide if a kernel function
 * is called by a bpf program.
 */
static inline bool has_current_bpf_ctx(void)
{
    return !!current->bpf_ctx;
}

void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);

void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
             enum bpf_dynptr_type type, u32 offset, u32 size);
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);

bool dev_check_flush(void);
bool cpu_map_check_flush(void);
#else /* !CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get(u32 ufd)
{
    return ERR_PTR(-EOPNOTSUPP);
}

static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
                             enum bpf_prog_type type,
                             bool attach_drv)
{
    return ERR_PTR(-EOPNOTSUPP);
}

static inline void bpf_prog_add(struct bpf_prog *prog, int i)
{
}

static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
{
}

static inline void bpf_prog_put(struct bpf_prog *prog)
{
}

static inline void bpf_prog_inc(struct bpf_prog *prog)
{
}

static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog *prog)
{
    return ERR_PTR(-EOPNOTSUPP);
}

static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
                 const struct bpf_link_ops *ops,
                 struct bpf_prog *prog)
{
}

static inline int bpf_link_prime(struct bpf_link *link,
                 struct bpf_link_primer *primer)
{
    return -EOPNOTSUPP;
}

static inline int bpf_link_settle(struct bpf_link_primer *primer)
{
    return -EOPNOTSUPP;
}

static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
{
}

static inline void bpf_link_inc(struct bpf_link *link)
{
}

static inline void bpf_link_put(struct bpf_link *link)
{
}

static inline int bpf_obj_get_user(const char __user *pathname, int flags)
{
    return -EOPNOTSUPP;
}

static inline void __dev_flush(void)
{
}

struct xdp_frame;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;

static inline
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
            struct net_device *dev_rx)
{
    return 0;
}

static inline
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
            struct net_device *dev_rx)
{
    return 0;
}

static inline
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
              struct bpf_map *map, bool exclude_ingress)
{
    return 0;
}

struct sk_buff;

static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
                       struct sk_buff *skb,
                       struct bpf_prog *xdp_prog)
{
    return 0;
}

static inline
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
               struct bpf_prog *xdp_prog, struct bpf_map *map,
               bool exclude_ingress)
{
    return 0;
}

static inline void __cpu_map_flush(void)
{
}

static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
                  struct xdp_frame *xdpf,
                  struct net_device *dev_rx)
{
    return 0;
}

static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
                       struct sk_buff *skb)
{
    return -EOPNOTSUPP;
}

static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
                enum bpf_prog_type type)
{
    return ERR_PTR(-EOPNOTSUPP);
}

static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
                    const union bpf_attr *kattr,
                    union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
                    const union bpf_attr *kattr,
                    union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
                        const union bpf_attr *kattr,
                        union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
                           const union bpf_attr *kattr,
                           union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
                          const union bpf_attr *kattr,
                          union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

static inline void bpf_map_put(struct bpf_map *map)
{
}

static inline struct bpf_prog *bpf_prog_by_id(u32 id)
{
    return ERR_PTR(-ENOTSUPP);
}

static inline int btf_struct_access(struct bpf_verifier_log *log,
                    const struct bpf_reg_state *reg,
                    int off, int size, enum bpf_access_type atype,
                    u32 *next_btf_id, enum bpf_type_flag *flag,
                    const char **field_name)
{
    return -EACCES;
}

static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)
{
    return NULL;
}

static inline void bpf_task_storage_free(struct task_struct *task)
{
}

static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
{
    return false;
}

static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
             const struct bpf_insn *insn)
{
    return NULL;
}

static inline int
bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
           u16 btf_fd_idx, u8 **func_addr)
{
    return -ENOTSUPP;
}

static inline bool unprivileged_ebpf_enabled(void)
{
    return false;
}

static inline bool has_current_bpf_ctx(void)
{
    return false;
}

static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
{
}

static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
{
}

static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
                   enum bpf_dynptr_type type, u32 offset, u32 size)
{
}

static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
{
}

static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
}
#endif /* CONFIG_BPF_SYSCALL */

static __always_inline int
bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
{
    int ret = -EFAULT;

    if (IS_ENABLED(CONFIG_BPF_EVENTS))
        ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
    if (unlikely(ret < 0))
        memset(dst, 0, size);
    return ret;
}

void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
              struct btf_mod_pair *used_btfs, u32 len);

static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
                         enum bpf_prog_type type)
{
    return bpf_prog_get_type_dev(ufd, type, false);
}

void __bpf_free_used_maps(struct bpf_prog_aux *aux,
              struct bpf_map **used_maps, u32 len);

bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);

int bpf_prog_offload_compile(struct bpf_prog *prog);
void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
                   struct bpf_prog *prog);

int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);

int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
int bpf_map_offload_update_elem(struct bpf_map *map,
                void *key, void *value, u64 flags);
int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
int bpf_map_offload_get_next_key(struct bpf_map *map,
                 void *key, void *next_key);

bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);

struct bpf_offload_dev *
bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
                    struct net_device *netdev);
void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
                       struct net_device *netdev);
bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);

void unpriv_ebpf_notify(int new_state);

#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
                  struct bpf_prog_aux *prog_aux);
void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
void bpf_dev_bound_netdev_unregister(struct net_device *dev);

static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
    return aux->dev_bound;
}

static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
{
    return aux->offload_requested;
}

bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);

static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
    return unlikely(map->ops == &bpf_map_offload_ops);
}

struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
void bpf_map_offload_map_free(struct bpf_map *map);
u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
                  const union bpf_attr *kattr,
                  union bpf_attr __user *uattr);

int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
int sock_map_bpf_prog_query(const union bpf_attr *attr,
                union bpf_attr __user *uattr);

void sock_map_unhash(struct sock *sk);
void sock_map_destroy(struct sock *sk);
void sock_map_close(struct sock *sk, long timeout);
#else
static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
                        struct bpf_prog_aux *prog_aux)
{
    return -EOPNOTSUPP;
}

static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
                        u32 func_id)
{
    return NULL;
}

static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
                      union bpf_attr *attr)
{
    return -EOPNOTSUPP;
}

static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
                         struct bpf_prog *old_prog)
{
    return -EOPNOTSUPP;
}

static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
{
}

static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
    return false;
}

static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
{
    return false;
}

static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
{
    return false;
}

static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
    return false;
}

static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
{
    return ERR_PTR(-EOPNOTSUPP);
}

static inline void bpf_map_offload_map_free(struct bpf_map *map)
{
}

static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
{
    return 0;
}

static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
                        const union bpf_attr *kattr,
                        union bpf_attr __user *uattr)
{
    return -ENOTSUPP;
}

#ifdef CONFIG_BPF_SYSCALL
static inline int sock_map_get_from_fd(const union bpf_attr *attr,
                       struct bpf_prog *prog)
{
    return -EINVAL;
}

static inline int sock_map_prog_detach(const union bpf_attr *attr,
                       enum bpf_prog_type ptype)
{
    return -EOPNOTSUPP;
}

static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
                       u64 flags)
{
    return -EOPNOTSUPP;
}

static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
                      union bpf_attr __user *uattr)
{
    return -EINVAL;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */

static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
{
    const struct bpf_prog_array_item *item;
    struct bpf_prog *prog;

    if (unlikely(!array))
        return;

    item = &array->items[0];
    while ((prog = READ_ONCE(item->prog))) {
        bpf_prog_inc_misses_counter(prog);
        item++;
    }
}

#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
void bpf_sk_reuseport_detach(struct sock *sk);
int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
                       void *value);
int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
                       void *value, u64 map_flags);
#else
static inline void bpf_sk_reuseport_detach(struct sock *sk)
{
}

#ifdef CONFIG_BPF_SYSCALL
static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
                             void *key, void *value)
{
    return -EOPNOTSUPP;
}

static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
                             void *key, void *value,
                             u64 map_flags)
{
    return -EOPNOTSUPP;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */

/* verifier prototypes for helper functions called from eBPF programs */
extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
extern const struct bpf_func_proto bpf_map_update_elem_proto;
extern const struct bpf_func_proto bpf_map_delete_elem_proto;
extern const struct bpf_func_proto bpf_map_push_elem_proto;
extern const struct bpf_func_proto bpf_map_pop_elem_proto;
extern const struct bpf_func_proto bpf_map_peek_elem_proto;
extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;

extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
extern const struct bpf_func_proto bpf_tail_call_proto;
extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
extern const struct bpf_func_proto bpf_get_current_comm_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto;
extern const struct bpf_func_proto bpf_get_stack_proto;
extern const struct bpf_func_proto bpf_get_task_stack_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
extern const struct bpf_func_proto bpf_get_stack_proto_pe;
extern const struct bpf_func_proto bpf_sock_map_update_proto;
extern const struct bpf_func_proto bpf_sock_hash_update_proto;
extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
extern const struct bpf_func_proto bpf_spin_lock_proto;
extern const struct bpf_func_proto bpf_spin_unlock_proto;
extern const struct bpf_func_proto bpf_get_local_storage_proto;
extern const struct bpf_func_proto bpf_strtol_proto;
extern const struct bpf_func_proto bpf_strtoul_proto;
extern const struct bpf_func_proto bpf_tcp_sock_proto;
extern const struct bpf_func_proto bpf_jiffies64_proto;
extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_event_output_data_proto;
extern const struct bpf_func_proto bpf_ringbuf_output_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
extern const struct bpf_func_proto bpf_ringbuf_query_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
extern const struct bpf_func_proto bpf_copy_from_user_proto;
extern const struct bpf_func_proto bpf_snprintf_btf_proto;
extern const struct bpf_func_proto bpf_snprintf_proto;
extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
extern const struct bpf_func_proto bpf_sock_from_file_proto;
extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_get_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_proto;
extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_find_vma_proto;
extern const struct bpf_func_proto bpf_loop_proto;
extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
extern const struct bpf_func_proto bpf_set_retval_proto;
extern const struct bpf_func_proto bpf_get_retval_proto;
extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;

const struct bpf_func_proto *tracing_prog_func_proto(
  enum bpf_func_id func_id, const struct bpf_prog *prog);

/* Shared helpers among cBPF and eBPF. */
void bpf_user_rnd_init_once(void);
u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);

#if defined(CONFIG_NET)
bool bpf_sock_common_is_valid_access(int off, int size,
                     enum bpf_access_type type,
                     struct bpf_insn_access_aux *info);
bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
                  struct bpf_insn_access_aux *info);
u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
                const struct bpf_insn *si,
                struct bpf_insn *insn_buf,
                struct bpf_prog *prog,
                u32 *target_size);
int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
                   struct bpf_dynptr_kern *ptr);
#else
static inline bool bpf_sock_common_is_valid_access(int off, int size,
                           enum bpf_access_type type,
                           struct bpf_insn_access_aux *info)
{
    return false;
}
static inline bool bpf_sock_is_valid_access(int off, int size,
                        enum bpf_access_type type,
                        struct bpf_insn_access_aux *info)
{
    return false;
}
static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
                          const struct bpf_insn *si,
                          struct bpf_insn *insn_buf,
                          struct bpf_prog *prog,
                          u32 *target_size)
{
    return 0;
}
static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
                         struct bpf_dynptr_kern *ptr)
{
    return -EOPNOTSUPP;
}
#endif

#ifdef CONFIG_INET
struct sk_reuseport_kern {
    struct sk_buff *skb;
    struct sock *sk;
    struct sock *selected_sk;
    struct sock *migrating_sk;
    void *data_end;
    u32 hash;
    u32 reuseport_id;
    bool bind_inany;
};
bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
                  struct bpf_insn_access_aux *info);

u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
                    const struct bpf_insn *si,
                    struct bpf_insn *insn_buf,
                    struct bpf_prog *prog,
                    u32 *target_size);

bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
                  struct bpf_insn_access_aux *info);

u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
                    const struct bpf_insn *si,
                    struct bpf_insn *insn_buf,
                    struct bpf_prog *prog,
                    u32 *target_size);
#else
static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
                        enum bpf_access_type type,
                        struct bpf_insn_access_aux *info)
{
    return false;
}

static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
                          const struct bpf_insn *si,
                          struct bpf_insn *insn_buf,
                          struct bpf_prog *prog,
                          u32 *target_size)
{
    return 0;
}
static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
                        enum bpf_access_type type,
                        struct bpf_insn_access_aux *info)
{
    return false;
}

static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
                          const struct bpf_insn *si,
                          struct bpf_insn *insn_buf,
                          struct bpf_prog *prog,
                          u32 *target_size)
{
    return 0;
}
#endif /* CONFIG_INET */

enum bpf_text_poke_type {
    BPF_MOD_CALL,
    BPF_MOD_JUMP,
};

int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
               void *addr1, void *addr2);

void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
                   struct bpf_prog *new, struct bpf_prog *old);

void *bpf_arch_text_copy(void *dst, void *src, size_t len);
int bpf_arch_text_invalidate(void *dst, size_t len);

struct btf_id_set;
bool btf_id_set_contains(const struct btf_id_set *set, u32 id);

#define MAX_BPRINTF_VARARGS        12
#define MAX_BPRINTF_BUF            1024

struct bpf_bprintf_data {
    u32 *bin_args;
    char *buf;
    bool get_bin_args;
    bool get_buf;
};

int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
            u32 num_args, struct bpf_bprintf_data *data);
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);

#ifdef CONFIG_BPF_LSM
void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
void bpf_cgroup_atype_put(int cgroup_atype);
#else
static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
#endif /* CONFIG_BPF_LSM */

struct key;

#ifdef CONFIG_KEYS
struct bpf_key {
    struct key *key;
    bool has_ref;
};
#endif /* CONFIG_KEYS */

static inline bool type_is_alloc(u32 type)
{
    return type & MEM_ALLOC;
}

static inline gfp_t bpf_memcg_flags(gfp_t flags)
{
    if (memcg_bpf_enabled())
        return flags | __GFP_ACCOUNT;
    return flags;
}

static inline bool bpf_is_subprog(const struct bpf_prog *prog)
{
    return prog->aux->func_idx != 0;
}

#endif /* _LINUX_BPF_H */

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.0 [PHP 7 Update] [25.02.2019] maintained by HackingTool | HackingTool | Generation time: 0.0088 ]--