Viewing file: compaction.h (4.42 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPACTION_H #define _LINUX_COMPACTION_H
/* * Determines how hard direct compaction should try to succeed. * Lower value means higher priority, analogically to reclaim priority. */ enum compact_priority { COMPACT_PRIO_SYNC_FULL, MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL, COMPACT_PRIO_SYNC_LIGHT, MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, COMPACT_PRIO_ASYNC, INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC };
/* Return values for compact_zone() and try_to_compact_pages() */ /* When adding new states, please adjust include/trace/events/compaction.h */ enum compact_result { /* For more detailed tracepoint output - internal to compaction */ COMPACT_NOT_SUITABLE_ZONE, /* * compaction didn't start as it was not possible or direct reclaim * was more suitable */ COMPACT_SKIPPED, /* compaction didn't start as it was deferred due to past failures */ COMPACT_DEFERRED,
/* For more detailed tracepoint output - internal to compaction */ COMPACT_NO_SUITABLE_PAGE, /* compaction should continue to another pageblock */ COMPACT_CONTINUE,
/* * The full zone was compacted scanned but wasn't successful to compact * suitable pages. */ COMPACT_COMPLETE, /* * direct compaction has scanned part of the zone but wasn't successful * to compact suitable pages. */ COMPACT_PARTIAL_SKIPPED,
/* compaction terminated prematurely due to lock contentions */ COMPACT_CONTENDED,
/* * direct compaction terminated after concluding that the allocation * should now succeed */ COMPACT_SUCCESS, };
struct alloc_context; /* in mm/internal.h */
/* * Number of free order-0 pages that should be available above given watermark * to make sure compaction has reasonable chance of not running out of free * pages that it needs to isolate as migration target during its work. */ static inline unsigned long compact_gap(unsigned int order) { /* * Although all the isolations for migration are temporary, compaction * free scanner may have up to 1 << order pages on its list and then * try to split an (order - 1) free page. At that point, a gap of * 1 << order might not be enough, so it's safer to require twice that * amount. Note that the number of pages on the list is also * effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum * that the migrate scanner can have isolated on migrate list, and free * scanner is only invoked when the number of isolated free pages is * lower than that. But it's not worth to complicate the formula here * as a bigger gap for higher orders than strictly necessary can also * improve chances of compaction success. */ return 2UL << order; }
#ifdef CONFIG_COMPACTION
extern unsigned int extfrag_for_order(struct zone *zone, unsigned int order); extern int fragmentation_index(struct zone *zone, unsigned int order); extern enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, struct page **page); extern void reset_isolation_suitable(pg_data_t *pgdat); extern bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx);
extern void compaction_defer_reset(struct zone *zone, int order, bool alloc_success);
bool compaction_zonelist_suitable(struct alloc_context *ac, int order, int alloc_flags);
extern void __meminit kcompactd_run(int nid); extern void __meminit kcompactd_stop(int nid); extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx);
#else static inline void reset_isolation_suitable(pg_data_t *pgdat) { }
static inline bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) { return false; }
static inline void kcompactd_run(int nid) { } static inline void kcompactd_stop(int nid) { }
static inline void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) { }
#endif /* CONFIG_COMPACTION */
struct node; #if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) extern int compaction_register_node(struct node *node); extern void compaction_unregister_node(struct node *node);
#else
static inline int compaction_register_node(struct node *node) { return 0; }
static inline void compaction_unregister_node(struct node *node) { } #endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */
#endif /* _LINUX_COMPACTION_H */
|