!C99Shell v. 2.0 [PHP 7 Update] [25.02.2019]!

Software: nginx/1.23.4. PHP/5.6.40-65+ubuntu20.04.1+deb.sury.org+1 

uname -a: Linux foro-restaurado-2 5.15.0-1040-oracle #46-Ubuntu SMP Fri Jul 14 21:47:21 UTC 2023
aarch64
 

uid=33(www-data) gid=33(www-data) groups=33(www-data) 

Safe-mode: OFF (not secure)

/usr/src/linux-oracle-6.8-headers-6.8.0-1028/include/rdma/   drwxr-xr-x
Free 83.34 GB of 96.73 GB (86.16%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     ib_verbs.h (141.96 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
/*
 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 */

#ifndef IB_VERBS_H
#define IB_VERBS_H

#include <linux/ethtool.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/rwsem.h>
#include <linux/workqueue.h>
#include <linux/irq_poll.h>
#include <uapi/linux/if_ether.h>
#include <net/ipv6.h>
#include <net/ip.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/refcount.h>
#include <linux/if_link.h>
#include <linux/atomic.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/cgroup_rdma.h>
#include <linux/irqflags.h>
#include <linux/preempt.h>
#include <linux/dim.h>
#include <uapi/rdma/ib_user_verbs.h>
#include <rdma/rdma_counter.h>
#include <rdma/restrack.h>
#include <rdma/signature.h>
#include <uapi/rdma/rdma_user_ioctl.h>
#include <uapi/rdma/ib_user_ioctl_verbs.h>

#define IB_FW_VERSION_NAME_MAX    ETHTOOL_FWVERS_LEN

struct ib_umem_odp;
struct ib_uqp_object;
struct ib_usrq_object;
struct ib_uwq_object;
struct rdma_cm_id;
struct ib_port;
struct hw_stats_device_data;

extern struct workqueue_struct *ib_wq;
extern struct workqueue_struct *ib_comp_wq;
extern struct workqueue_struct *ib_comp_unbound_wq;

struct ib_ucq_object;

__printf(3, 4) __cold
void ibdev_printk(const char *level, const struct ib_device *ibdev,
          const char *format, ...);
__printf(2, 3) __cold
void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
__printf(2, 3) __cold
void ibdev_info(const struct ib_device *ibdev, const char *format, ...);

#if defined(CONFIG_DYNAMIC_DEBUG) || \
    (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
#define ibdev_dbg(__dev, format, args...)                       \
    dynamic_ibdev_dbg(__dev, format, ##args)
#else
__printf(2, 3) __cold
static inline
void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
#endif

#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
do {                                                                    \
    static DEFINE_RATELIMIT_STATE(_rs,                              \
                      DEFAULT_RATELIMIT_INTERVAL,       \
                      DEFAULT_RATELIMIT_BURST);         \
    if (__ratelimit(&_rs))                                          \
        ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
} while (0)

#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_err_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
#define ibdev_info_ratelimited(ibdev, fmt, ...) \
    ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)

#if defined(CONFIG_DYNAMIC_DEBUG) || \
    (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
do {                                                                    \
    static DEFINE_RATELIMIT_STATE(_rs,                              \
                      DEFAULT_RATELIMIT_INTERVAL,       \
                      DEFAULT_RATELIMIT_BURST);         \
    DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
    if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
        __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
                    ##__VA_ARGS__);                     \
} while (0)
#else
__printf(2, 3) __cold
static inline
void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
#endif

union ib_gid {
    u8    raw[16];
    struct {
        __be64    subnet_prefix;
        __be64    interface_id;
    } global;
};

extern union ib_gid zgid;

enum ib_gid_type {
    IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
    IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
    IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
    IB_GID_TYPE_SIZE
};

#define ROCE_V2_UDP_DPORT      4791
struct ib_gid_attr {
    struct net_device __rcu    *ndev;
    struct ib_device    *device;
    union ib_gid        gid;
    enum ib_gid_type    gid_type;
    u16            index;
    u32            port_num;
};

enum {
    /* set the local administered indication */
    IB_SA_WELL_KNOWN_GUID    = BIT_ULL(57) | 2,
};

enum rdma_transport_type {
    RDMA_TRANSPORT_IB,
    RDMA_TRANSPORT_IWARP,
    RDMA_TRANSPORT_USNIC,
    RDMA_TRANSPORT_USNIC_UDP,
    RDMA_TRANSPORT_UNSPECIFIED,
};

enum rdma_protocol_type {
    RDMA_PROTOCOL_IB,
    RDMA_PROTOCOL_IBOE,
    RDMA_PROTOCOL_IWARP,
    RDMA_PROTOCOL_USNIC_UDP
};

__attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type);

enum rdma_network_type {
    RDMA_NETWORK_IB,
    RDMA_NETWORK_ROCE_V1,
    RDMA_NETWORK_IPV4,
    RDMA_NETWORK_IPV6
};

static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
{
    if (network_type == RDMA_NETWORK_IPV4 ||
        network_type == RDMA_NETWORK_IPV6)
        return IB_GID_TYPE_ROCE_UDP_ENCAP;
    else if (network_type == RDMA_NETWORK_ROCE_V1)
        return IB_GID_TYPE_ROCE;
    else
        return IB_GID_TYPE_IB;
}

static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
{
    if (attr->gid_type == IB_GID_TYPE_IB)
        return RDMA_NETWORK_IB;

    if (attr->gid_type == IB_GID_TYPE_ROCE)
        return RDMA_NETWORK_ROCE_V1;

    if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
        return RDMA_NETWORK_IPV4;
    else
        return RDMA_NETWORK_IPV6;
}

enum rdma_link_layer {
    IB_LINK_LAYER_UNSPECIFIED,
    IB_LINK_LAYER_INFINIBAND,
    IB_LINK_LAYER_ETHERNET,
};

enum ib_device_cap_flags {
    IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
    IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
    IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
    IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
    IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
    IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
    IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
    IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
    IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
    /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
    IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
    IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
    IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
    IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
    IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,

    /* Reserved, old SEND_W_INV = 1 << 16,*/
    IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
    /*
     * Devices should set IB_DEVICE_UD_IP_SUM if they support
     * insertion of UDP and TCP checksum on outgoing UD IPoIB
     * messages and can verify the validity of checksum for
     * incoming messages.  Setting this flag implies that the
     * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
     */
    IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
    IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,

    /*
     * This device supports the IB "base memory management extension",
     * which includes support for fast registrations (IB_WR_REG_MR,
     * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
     * also be set by any iWarp device which must support FRs to comply
     * to the iWarp verbs spec.  iWarp devices also support the
     * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
     * stag.
     */
    IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
    IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
    IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
    IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
    /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
    IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
    IB_DEVICE_MANAGED_FLOW_STEERING =
        IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
    /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
    IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
    /* The device supports padding incoming writes to cacheline. */
    IB_DEVICE_PCI_WRITE_END_PADDING =
        IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
    /* Placement type attributes */
    IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
    IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
    IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
};

enum ib_kernel_cap_flags {
    /*
     * This device supports a per-device lkey or stag that can be
     * used without performing a memory registration for the local
     * memory.  Note that ULPs should never check this flag, but
     * instead of use the local_dma_lkey flag in the ib_pd structure,
     * which will always contain a usable lkey.
     */
    IBK_LOCAL_DMA_LKEY = 1 << 0,
    /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
    IBK_INTEGRITY_HANDOVER = 1 << 1,
    /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
    IBK_ON_DEMAND_PAGING = 1 << 2,
    /* IB_MR_TYPE_SG_GAPS is supported */
    IBK_SG_GAPS_REG = 1 << 3,
    /* Driver supports RDMA_NLDEV_CMD_DELLINK */
    IBK_ALLOW_USER_UNREG = 1 << 4,

    /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
    IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
    /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
    IBK_UD_TSO = 1 << 6,
    /* iopib will use the device ops:
     *   get_vf_config
     *   get_vf_guid
     *   get_vf_stats
     *   set_vf_guid
     *   set_vf_link_state
     */
    IBK_VIRTUAL_FUNCTION = 1 << 7,
    /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
    IBK_RDMA_NETDEV_OPA = 1 << 8,
};

enum ib_atomic_cap {
    IB_ATOMIC_NONE,
    IB_ATOMIC_HCA,
    IB_ATOMIC_GLOB
};

enum ib_odp_general_cap_bits {
    IB_ODP_SUPPORT        = 1 << 0,
    IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
};

enum ib_odp_transport_cap_bits {
    IB_ODP_SUPPORT_SEND    = 1 << 0,
    IB_ODP_SUPPORT_RECV    = 1 << 1,
    IB_ODP_SUPPORT_WRITE    = 1 << 2,
    IB_ODP_SUPPORT_READ    = 1 << 3,
    IB_ODP_SUPPORT_ATOMIC    = 1 << 4,
    IB_ODP_SUPPORT_SRQ_RECV    = 1 << 5,
};

struct ib_odp_caps {
    uint64_t general_caps;
    struct {
        uint32_t  rc_odp_caps;
        uint32_t  uc_odp_caps;
        uint32_t  ud_odp_caps;
        uint32_t  xrc_odp_caps;
    } per_transport_caps;
};

struct ib_rss_caps {
    /* Corresponding bit will be set if qp type from
     * 'enum ib_qp_type' is supported, e.g.
     * supported_qpts |= 1 << IB_QPT_UD
     */
    u32 supported_qpts;
    u32 max_rwq_indirection_tables;
    u32 max_rwq_indirection_table_size;
};

enum ib_tm_cap_flags {
    /*  Support tag matching with rendezvous offload for RC transport */
    IB_TM_CAP_RNDV_RC = 1 << 0,
};

struct ib_tm_caps {
    /* Max size of RNDV header */
    u32 max_rndv_hdr_size;
    /* Max number of entries in tag matching list */
    u32 max_num_tags;
    /* From enum ib_tm_cap_flags */
    u32 flags;
    /* Max number of outstanding list operations */
    u32 max_ops;
    /* Max number of SGE in tag matching entry */
    u32 max_sge;
};

struct ib_cq_init_attr {
    unsigned int    cqe;
    u32        comp_vector;
    u32        flags;
};

enum ib_cq_attr_mask {
    IB_CQ_MODERATE = 1 << 0,
};

struct ib_cq_caps {
    u16     max_cq_moderation_count;
    u16     max_cq_moderation_period;
};

struct ib_dm_mr_attr {
    u64        length;
    u64        offset;
    u32        access_flags;
};

struct ib_dm_alloc_attr {
    u64    length;
    u32    alignment;
    u32    flags;
};

struct ib_device_attr {
    u64            fw_ver;
    __be64            sys_image_guid;
    u64            max_mr_size;
    u64            page_size_cap;
    u32            vendor_id;
    u32            vendor_part_id;
    u32            hw_ver;
    int            max_qp;
    int            max_qp_wr;
    u64            device_cap_flags;
    u64            kernel_cap_flags;
    int            max_send_sge;
    int            max_recv_sge;
    int            max_sge_rd;
    int            max_cq;
    int            max_cqe;
    int            max_mr;
    int            max_pd;
    int            max_qp_rd_atom;
    int            max_ee_rd_atom;
    int            max_res_rd_atom;
    int            max_qp_init_rd_atom;
    int            max_ee_init_rd_atom;
    enum ib_atomic_cap    atomic_cap;
    enum ib_atomic_cap    masked_atomic_cap;
    int            max_ee;
    int            max_rdd;
    int            max_mw;
    int            max_raw_ipv6_qp;
    int            max_raw_ethy_qp;
    int            max_mcast_grp;
    int            max_mcast_qp_attach;
    int            max_total_mcast_qp_attach;
    int            max_ah;
    int            max_srq;
    int            max_srq_wr;
    int            max_srq_sge;
    unsigned int        max_fast_reg_page_list_len;
    unsigned int        max_pi_fast_reg_page_list_len;
    u16            max_pkeys;
    u8            local_ca_ack_delay;
    int            sig_prot_cap;
    int            sig_guard_cap;
    struct ib_odp_caps    odp_caps;
    uint64_t        timestamp_mask;
    uint64_t        hca_core_clock; /* in KHZ */
    struct ib_rss_caps    rss_caps;
    u32            max_wq_type_rq;
    u32            raw_packet_caps; /* Use ib_raw_packet_caps enum */
    struct ib_tm_caps    tm_caps;
    struct ib_cq_caps       cq_caps;
    u64            max_dm_size;
    /* Max entries for sgl for optimized performance per READ */
    u32            max_sgl_rd;
};

enum ib_mtu {
    IB_MTU_256  = 1,
    IB_MTU_512  = 2,
    IB_MTU_1024 = 3,
    IB_MTU_2048 = 4,
    IB_MTU_4096 = 5
};

enum opa_mtu {
    OPA_MTU_8192 = 6,
    OPA_MTU_10240 = 7
};

static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
{
    switch (mtu) {
    case IB_MTU_256:  return  256;
    case IB_MTU_512:  return  512;
    case IB_MTU_1024: return 1024;
    case IB_MTU_2048: return 2048;
    case IB_MTU_4096: return 4096;
    default:       return -1;
    }
}

static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
{
    if (mtu >= 4096)
        return IB_MTU_4096;
    else if (mtu >= 2048)
        return IB_MTU_2048;
    else if (mtu >= 1024)
        return IB_MTU_1024;
    else if (mtu >= 512)
        return IB_MTU_512;
    else
        return IB_MTU_256;
}

static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
{
    switch (mtu) {
    case OPA_MTU_8192:
        return 8192;
    case OPA_MTU_10240:
        return 10240;
    default:
        return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
    }
}

static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
{
    if (mtu >= 10240)
        return OPA_MTU_10240;
    else if (mtu >= 8192)
        return OPA_MTU_8192;
    else
        return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
}

enum ib_port_state {
    IB_PORT_NOP        = 0,
    IB_PORT_DOWN        = 1,
    IB_PORT_INIT        = 2,
    IB_PORT_ARMED        = 3,
    IB_PORT_ACTIVE        = 4,
    IB_PORT_ACTIVE_DEFER    = 5
};

enum ib_port_phys_state {
    IB_PORT_PHYS_STATE_SLEEP = 1,
    IB_PORT_PHYS_STATE_POLLING = 2,
    IB_PORT_PHYS_STATE_DISABLED = 3,
    IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
    IB_PORT_PHYS_STATE_LINK_UP = 5,
    IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
    IB_PORT_PHYS_STATE_PHY_TEST = 7,
};

enum ib_port_width {
    IB_WIDTH_1X    = 1,
    IB_WIDTH_2X    = 16,
    IB_WIDTH_4X    = 2,
    IB_WIDTH_8X    = 4,
    IB_WIDTH_12X    = 8
};

static inline int ib_width_enum_to_int(enum ib_port_width width)
{
    switch (width) {
    case IB_WIDTH_1X:  return  1;
    case IB_WIDTH_2X:  return  2;
    case IB_WIDTH_4X:  return  4;
    case IB_WIDTH_8X:  return  8;
    case IB_WIDTH_12X: return 12;
    default:       return -1;
    }
}

enum ib_port_speed {
    IB_SPEED_SDR    = 1,
    IB_SPEED_DDR    = 2,
    IB_SPEED_QDR    = 4,
    IB_SPEED_FDR10    = 8,
    IB_SPEED_FDR    = 16,
    IB_SPEED_EDR    = 32,
    IB_SPEED_HDR    = 64,
    IB_SPEED_NDR    = 128,
    IB_SPEED_XDR    = 256,
};

enum ib_stat_flag {
    IB_STAT_FLAG_OPTIONAL = 1 << 0,
};

/**
 * struct rdma_stat_desc
 * @name - The name of the counter
 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
 * @priv - Driver private information; Core code should not use
 */
struct rdma_stat_desc {
    const char *name;
    unsigned int flags;
    const void *priv;
};

/**
 * struct rdma_hw_stats
 * @lock - Mutex to protect parallel write access to lifespan and values
 *    of counters, which are 64bits and not guaranteed to be written
 *    atomicaly on 32bits systems.
 * @timestamp - Used by the core code to track when the last update was
 * @lifespan - Used by the core code to determine how old the counters
 *   should be before being updated again.  Stored in jiffies, defaults
 *   to 10 milliseconds, drivers can override the default be specifying
 *   their own value during their allocation routine.
 * @descs - Array of pointers to static descriptors used for the counters
 *   in directory.
 * @is_disabled - A bitmap to indicate each counter is currently disabled
 *   or not.
 * @num_counters - How many hardware counters there are.  If name is
 *   shorter than this number, a kernel oops will result.  Driver authors
 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 *   in their code to prevent this.
 * @value - Array of u64 counters that are accessed by the sysfs code and
 *   filled in by the drivers get_stats routine
 */
struct rdma_hw_stats {
    struct mutex    lock; /* Protect lifespan and values[] */
    unsigned long    timestamp;
    unsigned long    lifespan;
    const struct rdma_stat_desc *descs;
    unsigned long    *is_disabled;
    int        num_counters;
    u64        value[] __counted_by(num_counters);
};

#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10

struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
    const struct rdma_stat_desc *descs, int num_counters,
    unsigned long lifespan);

void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);

/* Define bits for the various functionality this port needs to be supported by
 * the core.
 */
/* Management                           0x00000FFF */
#define RDMA_CORE_CAP_IB_MAD            0x00000001
#define RDMA_CORE_CAP_IB_SMI            0x00000002
#define RDMA_CORE_CAP_IB_CM             0x00000004
#define RDMA_CORE_CAP_IW_CM             0x00000008
#define RDMA_CORE_CAP_IB_SA             0x00000010
#define RDMA_CORE_CAP_OPA_MAD           0x00000020

/* Address format                       0x000FF000 */
#define RDMA_CORE_CAP_AF_IB             0x00001000
#define RDMA_CORE_CAP_ETH_AH            0x00002000
#define RDMA_CORE_CAP_OPA_AH            0x00004000
#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000

/* Protocol                             0xFFF00000 */
#define RDMA_CORE_CAP_PROT_IB           0x00100000
#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
#define RDMA_CORE_CAP_PROT_USNIC        0x02000000

#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
                    | RDMA_CORE_CAP_PROT_ROCE     \
                    | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)

#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
                    | RDMA_CORE_CAP_IB_MAD \
                    | RDMA_CORE_CAP_IB_SMI \
                    | RDMA_CORE_CAP_IB_CM  \
                    | RDMA_CORE_CAP_IB_SA  \
                    | RDMA_CORE_CAP_AF_IB)
#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
                    | RDMA_CORE_CAP_IB_MAD  \
                    | RDMA_CORE_CAP_IB_CM   \
                    | RDMA_CORE_CAP_AF_IB   \
                    | RDMA_CORE_CAP_ETH_AH)
#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP            \
                    (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
                    | RDMA_CORE_CAP_IB_MAD  \
                    | RDMA_CORE_CAP_IB_CM   \
                    | RDMA_CORE_CAP_AF_IB   \
                    | RDMA_CORE_CAP_ETH_AH)
#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
                    | RDMA_CORE_CAP_IW_CM)
#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
                    | RDMA_CORE_CAP_OPA_MAD)

#define RDMA_CORE_PORT_RAW_PACKET    (RDMA_CORE_CAP_PROT_RAW_PACKET)

#define RDMA_CORE_PORT_USNIC        (RDMA_CORE_CAP_PROT_USNIC)

struct ib_port_attr {
    u64            subnet_prefix;
    enum ib_port_state    state;
    enum ib_mtu        max_mtu;
    enum ib_mtu        active_mtu;
    u32                     phys_mtu;
    int            gid_tbl_len;
    unsigned int        ip_gids:1;
    /* This is the value from PortInfo CapabilityMask, defined by IBA */
    u32            port_cap_flags;
    u32            max_msg_sz;
    u32            bad_pkey_cntr;
    u32            qkey_viol_cntr;
    u16            pkey_tbl_len;
    u32            sm_lid;
    u32            lid;
    u8            lmc;
    u8            max_vl_num;
    u8            sm_sl;
    u8            subnet_timeout;
    u8            init_type_reply;
    u8            active_width;
    u16            active_speed;
    u8                      phys_state;
    u16            port_cap_flags2;
};

enum ib_device_modify_flags {
    IB_DEVICE_MODIFY_SYS_IMAGE_GUID    = 1 << 0,
    IB_DEVICE_MODIFY_NODE_DESC    = 1 << 1
};

#define IB_DEVICE_NODE_DESC_MAX 64

struct ib_device_modify {
    u64    sys_image_guid;
    char    node_desc[IB_DEVICE_NODE_DESC_MAX];
};

enum ib_port_modify_flags {
    IB_PORT_SHUTDOWN        = 1,
    IB_PORT_INIT_TYPE        = (1<<2),
    IB_PORT_RESET_QKEY_CNTR        = (1<<3),
    IB_PORT_OPA_MASK_CHG        = (1<<4)
};

struct ib_port_modify {
    u32    set_port_cap_mask;
    u32    clr_port_cap_mask;
    u8    init_type;
};

enum ib_event_type {
    IB_EVENT_CQ_ERR,
    IB_EVENT_QP_FATAL,
    IB_EVENT_QP_REQ_ERR,
    IB_EVENT_QP_ACCESS_ERR,
    IB_EVENT_COMM_EST,
    IB_EVENT_SQ_DRAINED,
    IB_EVENT_PATH_MIG,
    IB_EVENT_PATH_MIG_ERR,
    IB_EVENT_DEVICE_FATAL,
    IB_EVENT_PORT_ACTIVE,
    IB_EVENT_PORT_ERR,
    IB_EVENT_LID_CHANGE,
    IB_EVENT_PKEY_CHANGE,
    IB_EVENT_SM_CHANGE,
    IB_EVENT_SRQ_ERR,
    IB_EVENT_SRQ_LIMIT_REACHED,
    IB_EVENT_QP_LAST_WQE_REACHED,
    IB_EVENT_CLIENT_REREGISTER,
    IB_EVENT_GID_CHANGE,
    IB_EVENT_WQ_FATAL,
};

const char *__attribute_const__ ib_event_msg(enum ib_event_type event);

struct ib_event {
    struct ib_device    *device;
    union {
        struct ib_cq    *cq;
        struct ib_qp    *qp;
        struct ib_srq    *srq;
        struct ib_wq    *wq;
        u32        port_num;
    } element;
    enum ib_event_type    event;
};

struct ib_event_handler {
    struct ib_device *device;
    void            (*handler)(struct ib_event_handler *, struct ib_event *);
    struct list_head  list;
};

#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)        \
    do {                            \
        (_ptr)->device  = _device;            \
        (_ptr)->handler = _handler;            \
        INIT_LIST_HEAD(&(_ptr)->list);            \
    } while (0)

struct ib_global_route {
    const struct ib_gid_attr *sgid_attr;
    union ib_gid    dgid;
    u32        flow_label;
    u8        sgid_index;
    u8        hop_limit;
    u8        traffic_class;
};

struct ib_grh {
    __be32        version_tclass_flow;
    __be16        paylen;
    u8        next_hdr;
    u8        hop_limit;
    union ib_gid    sgid;
    union ib_gid    dgid;
};

union rdma_network_hdr {
    struct ib_grh ibgrh;
    struct {
        /* The IB spec states that if it's IPv4, the header
         * is located in the last 20 bytes of the header.
         */
        u8        reserved[20];
        struct iphdr    roce4grh;
    };
};

#define IB_QPN_MASK        0xFFFFFF

enum {
    IB_MULTICAST_QPN = 0xffffff
};

#define IB_LID_PERMISSIVE    cpu_to_be16(0xFFFF)
#define IB_MULTICAST_LID_BASE    cpu_to_be16(0xC000)

enum ib_ah_flags {
    IB_AH_GRH    = 1
};

enum ib_rate {
    IB_RATE_PORT_CURRENT = 0,
    IB_RATE_2_5_GBPS = 2,
    IB_RATE_5_GBPS   = 5,
    IB_RATE_10_GBPS  = 3,
    IB_RATE_20_GBPS  = 6,
    IB_RATE_30_GBPS  = 4,
    IB_RATE_40_GBPS  = 7,
    IB_RATE_60_GBPS  = 8,
    IB_RATE_80_GBPS  = 9,
    IB_RATE_120_GBPS = 10,
    IB_RATE_14_GBPS  = 11,
    IB_RATE_56_GBPS  = 12,
    IB_RATE_112_GBPS = 13,
    IB_RATE_168_GBPS = 14,
    IB_RATE_25_GBPS  = 15,
    IB_RATE_100_GBPS = 16,
    IB_RATE_200_GBPS = 17,
    IB_RATE_300_GBPS = 18,
    IB_RATE_28_GBPS  = 19,
    IB_RATE_50_GBPS  = 20,
    IB_RATE_400_GBPS = 21,
    IB_RATE_600_GBPS = 22,
    IB_RATE_800_GBPS = 23,
};

/**
 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 * @rate: rate to convert.
 */
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);

/**
 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 * @rate: rate to convert.
 */
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);


/**
 * enum ib_mr_type - memory region type
 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 *                            normal registration
 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 *                            register any arbitrary sg lists (without
 *                            the normal mr constraints - see
 *                            ib_map_mr_sg)
 * @IB_MR_TYPE_DM:            memory region that is used for device
 *                            memory registration
 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 *                            application
 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 *                            without address translations (VA=PA)
 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 *                            data integrity operations
 */
enum ib_mr_type {
    IB_MR_TYPE_MEM_REG,
    IB_MR_TYPE_SG_GAPS,
    IB_MR_TYPE_DM,
    IB_MR_TYPE_USER,
    IB_MR_TYPE_DMA,
    IB_MR_TYPE_INTEGRITY,
};

enum ib_mr_status_check {
    IB_MR_CHECK_SIG_STATUS = 1,
};

/**
 * struct ib_mr_status - Memory region status container
 *
 * @fail_status: Bitmask of MR checks status. For each
 *     failed check a corresponding status bit is set.
 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 *     failure.
 */
struct ib_mr_status {
    u32            fail_status;
    struct ib_sig_err   sig_err;
};

/**
 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 * enum.
 * @mult: multiple to convert.
 */
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);

struct rdma_ah_init_attr {
    struct rdma_ah_attr *ah_attr;
    u32 flags;
    struct net_device *xmit_slave;
};

enum rdma_ah_attr_type {
    RDMA_AH_ATTR_TYPE_UNDEFINED,
    RDMA_AH_ATTR_TYPE_IB,
    RDMA_AH_ATTR_TYPE_ROCE,
    RDMA_AH_ATTR_TYPE_OPA,
};

struct ib_ah_attr {
    u16            dlid;
    u8            src_path_bits;
};

struct roce_ah_attr {
    u8            dmac[ETH_ALEN];
};

struct opa_ah_attr {
    u32            dlid;
    u8            src_path_bits;
    bool            make_grd;
};

struct rdma_ah_attr {
    struct ib_global_route    grh;
    u8            sl;
    u8            static_rate;
    u32            port_num;
    u8            ah_flags;
    enum rdma_ah_attr_type type;
    union {
        struct ib_ah_attr ib;
        struct roce_ah_attr roce;
        struct opa_ah_attr opa;
    };
};

enum ib_wc_status {
    IB_WC_SUCCESS,
    IB_WC_LOC_LEN_ERR,
    IB_WC_LOC_QP_OP_ERR,
    IB_WC_LOC_EEC_OP_ERR,
    IB_WC_LOC_PROT_ERR,
    IB_WC_WR_FLUSH_ERR,
    IB_WC_MW_BIND_ERR,
    IB_WC_BAD_RESP_ERR,
    IB_WC_LOC_ACCESS_ERR,
    IB_WC_REM_INV_REQ_ERR,
    IB_WC_REM_ACCESS_ERR,
    IB_WC_REM_OP_ERR,
    IB_WC_RETRY_EXC_ERR,
    IB_WC_RNR_RETRY_EXC_ERR,
    IB_WC_LOC_RDD_VIOL_ERR,
    IB_WC_REM_INV_RD_REQ_ERR,
    IB_WC_REM_ABORT_ERR,
    IB_WC_INV_EECN_ERR,
    IB_WC_INV_EEC_STATE_ERR,
    IB_WC_FATAL_ERR,
    IB_WC_RESP_TIMEOUT_ERR,
    IB_WC_GENERAL_ERR
};

const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);

enum ib_wc_opcode {
    IB_WC_SEND = IB_UVERBS_WC_SEND,
    IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
    IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
    IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
    IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
    IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
    IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
    IB_WC_LSO = IB_UVERBS_WC_TSO,
    IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
    IB_WC_REG_MR,
    IB_WC_MASKED_COMP_SWAP,
    IB_WC_MASKED_FETCH_ADD,
    IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
/*
 * Set value of IB_WC_RECV so consumers can test if a completion is a
 * receive by testing (opcode & IB_WC_RECV).
 */
    IB_WC_RECV            = 1 << 7,
    IB_WC_RECV_RDMA_WITH_IMM
};

enum ib_wc_flags {
    IB_WC_GRH        = 1,
    IB_WC_WITH_IMM        = (1<<1),
    IB_WC_WITH_INVALIDATE    = (1<<2),
    IB_WC_IP_CSUM_OK    = (1<<3),
    IB_WC_WITH_SMAC        = (1<<4),
    IB_WC_WITH_VLAN        = (1<<5),
    IB_WC_WITH_NETWORK_HDR_TYPE    = (1<<6),
};

struct ib_wc {
    union {
        u64        wr_id;
        struct ib_cqe    *wr_cqe;
    };
    enum ib_wc_status    status;
    enum ib_wc_opcode    opcode;
    u32            vendor_err;
    u32            byte_len;
    struct ib_qp           *qp;
    union {
        __be32        imm_data;
        u32        invalidate_rkey;
    } ex;
    u32            src_qp;
    u32            slid;
    int            wc_flags;
    u16            pkey_index;
    u8            sl;
    u8            dlid_path_bits;
    u32 port_num; /* valid only for DR SMPs on switches */
    u8            smac[ETH_ALEN];
    u16            vlan_id;
    u8            network_hdr_type;
};

enum ib_cq_notify_flags {
    IB_CQ_SOLICITED            = 1 << 0,
    IB_CQ_NEXT_COMP            = 1 << 1,
    IB_CQ_SOLICITED_MASK        = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
    IB_CQ_REPORT_MISSED_EVENTS    = 1 << 2,
};

enum ib_srq_type {
    IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
    IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
    IB_SRQT_TM = IB_UVERBS_SRQT_TM,
};

static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
{
    return srq_type == IB_SRQT_XRC ||
           srq_type == IB_SRQT_TM;
}

enum ib_srq_attr_mask {
    IB_SRQ_MAX_WR    = 1 << 0,
    IB_SRQ_LIMIT    = 1 << 1,
};

struct ib_srq_attr {
    u32    max_wr;
    u32    max_sge;
    u32    srq_limit;
};

struct ib_srq_init_attr {
    void              (*event_handler)(struct ib_event *, void *);
    void               *srq_context;
    struct ib_srq_attr    attr;
    enum ib_srq_type    srq_type;

    struct {
        struct ib_cq   *cq;
        union {
            struct {
                struct ib_xrcd *xrcd;
            } xrc;

            struct {
                u32        max_num_tags;
            } tag_matching;
        };
    } ext;
};

struct ib_qp_cap {
    u32    max_send_wr;
    u32    max_recv_wr;
    u32    max_send_sge;
    u32    max_recv_sge;
    u32    max_inline_data;

    /*
     * Maximum number of rdma_rw_ctx structures in flight at a time.
     * ib_create_qp() will calculate the right amount of needed WRs
     * and MRs based on this.
     */
    u32    max_rdma_ctxs;
};

enum ib_sig_type {
    IB_SIGNAL_ALL_WR,
    IB_SIGNAL_REQ_WR
};

enum ib_qp_type {
    /*
     * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
     * here (and in that order) since the MAD layer uses them as
     * indices into a 2-entry table.
     */
    IB_QPT_SMI,
    IB_QPT_GSI,

    IB_QPT_RC = IB_UVERBS_QPT_RC,
    IB_QPT_UC = IB_UVERBS_QPT_UC,
    IB_QPT_UD = IB_UVERBS_QPT_UD,
    IB_QPT_RAW_IPV6,
    IB_QPT_RAW_ETHERTYPE,
    IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
    IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
    IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
    IB_QPT_MAX,
    IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
    /* Reserve a range for qp types internal to the low level driver.
     * These qp types will not be visible at the IB core layer, so the
     * IB_QPT_MAX usages should not be affected in the core layer
     */
    IB_QPT_RESERVED1 = 0x1000,
    IB_QPT_RESERVED2,
    IB_QPT_RESERVED3,
    IB_QPT_RESERVED4,
    IB_QPT_RESERVED5,
    IB_QPT_RESERVED6,
    IB_QPT_RESERVED7,
    IB_QPT_RESERVED8,
    IB_QPT_RESERVED9,
    IB_QPT_RESERVED10,
};

enum ib_qp_create_flags {
    IB_QP_CREATE_IPOIB_UD_LSO        = 1 << 0,
    IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK    =
        IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
    IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
    IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
    IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
    IB_QP_CREATE_NETIF_QP            = 1 << 5,
    IB_QP_CREATE_INTEGRITY_EN        = 1 << 6,
    IB_QP_CREATE_NETDEV_USE            = 1 << 7,
    IB_QP_CREATE_SCATTER_FCS        =
        IB_UVERBS_QP_CREATE_SCATTER_FCS,
    IB_QP_CREATE_CVLAN_STRIPPING        =
        IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
    IB_QP_CREATE_SOURCE_QPN            = 1 << 10,
    IB_QP_CREATE_PCI_WRITE_END_PADDING    =
        IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
    /* reserve bits 26-31 for low level drivers' internal use */
    IB_QP_CREATE_RESERVED_START        = 1 << 26,
    IB_QP_CREATE_RESERVED_END        = 1 << 31,
};

/*
 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
 * callback to destroy the passed in QP.
 */

struct ib_qp_init_attr {
    /* This callback occurs in workqueue context */
    void                  (*event_handler)(struct ib_event *, void *);

    void               *qp_context;
    struct ib_cq           *send_cq;
    struct ib_cq           *recv_cq;
    struct ib_srq           *srq;
    struct ib_xrcd           *xrcd;     /* XRC TGT QPs only */
    struct ib_qp_cap    cap;
    enum ib_sig_type    sq_sig_type;
    enum ib_qp_type        qp_type;
    u32            create_flags;

    /*
     * Only needed for special QP types, or when using the RW API.
     */
    u32            port_num;
    struct ib_rwq_ind_table *rwq_ind_tbl;
    u32            source_qpn;
};

struct ib_qp_open_attr {
    void                  (*event_handler)(struct ib_event *, void *);
    void               *qp_context;
    u32            qp_num;
    enum ib_qp_type        qp_type;
};

enum ib_rnr_timeout {
    IB_RNR_TIMER_655_36 =  0,
    IB_RNR_TIMER_000_01 =  1,
    IB_RNR_TIMER_000_02 =  2,
    IB_RNR_TIMER_000_03 =  3,
    IB_RNR_TIMER_000_04 =  4,
    IB_RNR_TIMER_000_06 =  5,
    IB_RNR_TIMER_000_08 =  6,
    IB_RNR_TIMER_000_12 =  7,
    IB_RNR_TIMER_000_16 =  8,
    IB_RNR_TIMER_000_24 =  9,
    IB_RNR_TIMER_000_32 = 10,
    IB_RNR_TIMER_000_48 = 11,
    IB_RNR_TIMER_000_64 = 12,
    IB_RNR_TIMER_000_96 = 13,
    IB_RNR_TIMER_001_28 = 14,
    IB_RNR_TIMER_001_92 = 15,
    IB_RNR_TIMER_002_56 = 16,
    IB_RNR_TIMER_003_84 = 17,
    IB_RNR_TIMER_005_12 = 18,
    IB_RNR_TIMER_007_68 = 19,
    IB_RNR_TIMER_010_24 = 20,
    IB_RNR_TIMER_015_36 = 21,
    IB_RNR_TIMER_020_48 = 22,
    IB_RNR_TIMER_030_72 = 23,
    IB_RNR_TIMER_040_96 = 24,
    IB_RNR_TIMER_061_44 = 25,
    IB_RNR_TIMER_081_92 = 26,
    IB_RNR_TIMER_122_88 = 27,
    IB_RNR_TIMER_163_84 = 28,
    IB_RNR_TIMER_245_76 = 29,
    IB_RNR_TIMER_327_68 = 30,
    IB_RNR_TIMER_491_52 = 31
};

enum ib_qp_attr_mask {
    IB_QP_STATE            = 1,
    IB_QP_CUR_STATE            = (1<<1),
    IB_QP_EN_SQD_ASYNC_NOTIFY    = (1<<2),
    IB_QP_ACCESS_FLAGS        = (1<<3),
    IB_QP_PKEY_INDEX        = (1<<4),
    IB_QP_PORT            = (1<<5),
    IB_QP_QKEY            = (1<<6),
    IB_QP_AV            = (1<<7),
    IB_QP_PATH_MTU            = (1<<8),
    IB_QP_TIMEOUT            = (1<<9),
    IB_QP_RETRY_CNT            = (1<<10),
    IB_QP_RNR_RETRY            = (1<<11),
    IB_QP_RQ_PSN            = (1<<12),
    IB_QP_MAX_QP_RD_ATOMIC        = (1<<13),
    IB_QP_ALT_PATH            = (1<<14),
    IB_QP_MIN_RNR_TIMER        = (1<<15),
    IB_QP_SQ_PSN            = (1<<16),
    IB_QP_MAX_DEST_RD_ATOMIC    = (1<<17),
    IB_QP_PATH_MIG_STATE        = (1<<18),
    IB_QP_CAP            = (1<<19),
    IB_QP_DEST_QPN            = (1<<20),
    IB_QP_RESERVED1            = (1<<21),
    IB_QP_RESERVED2            = (1<<22),
    IB_QP_RESERVED3            = (1<<23),
    IB_QP_RESERVED4            = (1<<24),
    IB_QP_RATE_LIMIT        = (1<<25),

    IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
};

enum ib_qp_state {
    IB_QPS_RESET,
    IB_QPS_INIT,
    IB_QPS_RTR,
    IB_QPS_RTS,
    IB_QPS_SQD,
    IB_QPS_SQE,
    IB_QPS_ERR
};

enum ib_mig_state {
    IB_MIG_MIGRATED,
    IB_MIG_REARM,
    IB_MIG_ARMED
};

enum ib_mw_type {
    IB_MW_TYPE_1 = 1,
    IB_MW_TYPE_2 = 2
};

struct ib_qp_attr {
    enum ib_qp_state    qp_state;
    enum ib_qp_state    cur_qp_state;
    enum ib_mtu        path_mtu;
    enum ib_mig_state    path_mig_state;
    u32            qkey;
    u32            rq_psn;
    u32            sq_psn;
    u32            dest_qp_num;
    int            qp_access_flags;
    struct ib_qp_cap    cap;
    struct rdma_ah_attr    ah_attr;
    struct rdma_ah_attr    alt_ah_attr;
    u16            pkey_index;
    u16            alt_pkey_index;
    u8            en_sqd_async_notify;
    u8            sq_draining;
    u8            max_rd_atomic;
    u8            max_dest_rd_atomic;
    u8            min_rnr_timer;
    u32            port_num;
    u8            timeout;
    u8            retry_cnt;
    u8            rnr_retry;
    u32            alt_port_num;
    u8            alt_timeout;
    u32            rate_limit;
    struct net_device    *xmit_slave;
};

enum ib_wr_opcode {
    /* These are shared with userspace */
    IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
    IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
    IB_WR_SEND = IB_UVERBS_WR_SEND,
    IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
    IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
    IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
    IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
    IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
    IB_WR_LSO = IB_UVERBS_WR_TSO,
    IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
    IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
    IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
    IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
        IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
    IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
        IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
    IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
    IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,

    /* These are kernel only and can not be issued by userspace */
    IB_WR_REG_MR = 0x20,
    IB_WR_REG_MR_INTEGRITY,

    /* reserve values for low level drivers' internal use.
     * These values will not be used at all in the ib core layer.
     */
    IB_WR_RESERVED1 = 0xf0,
    IB_WR_RESERVED2,
    IB_WR_RESERVED3,
    IB_WR_RESERVED4,
    IB_WR_RESERVED5,
    IB_WR_RESERVED6,
    IB_WR_RESERVED7,
    IB_WR_RESERVED8,
    IB_WR_RESERVED9,
    IB_WR_RESERVED10,
};

enum ib_send_flags {
    IB_SEND_FENCE        = 1,
    IB_SEND_SIGNALED    = (1<<1),
    IB_SEND_SOLICITED    = (1<<2),
    IB_SEND_INLINE        = (1<<3),
    IB_SEND_IP_CSUM        = (1<<4),

    /* reserve bits 26-31 for low level drivers' internal use */
    IB_SEND_RESERVED_START    = (1 << 26),
    IB_SEND_RESERVED_END    = (1 << 31),
};

struct ib_sge {
    u64    addr;
    u32    length;
    u32    lkey;
};

struct ib_cqe {
    void (*done)(struct ib_cq *cq, struct ib_wc *wc);
};

struct ib_send_wr {
    struct ib_send_wr      *next;
    union {
        u64        wr_id;
        struct ib_cqe    *wr_cqe;
    };
    struct ib_sge           *sg_list;
    int            num_sge;
    enum ib_wr_opcode    opcode;
    int            send_flags;
    union {
        __be32        imm_data;
        u32        invalidate_rkey;
    } ex;
};

struct ib_rdma_wr {
    struct ib_send_wr    wr;
    u64            remote_addr;
    u32            rkey;
};

static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
{
    return container_of(wr, struct ib_rdma_wr, wr);
}

struct ib_atomic_wr {
    struct ib_send_wr    wr;
    u64            remote_addr;
    u64            compare_add;
    u64            swap;
    u64            compare_add_mask;
    u64            swap_mask;
    u32            rkey;
};

static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
{
    return container_of(wr, struct ib_atomic_wr, wr);
}

struct ib_ud_wr {
    struct ib_send_wr    wr;
    struct ib_ah        *ah;
    void            *header;
    int            hlen;
    int            mss;
    u32            remote_qpn;
    u32            remote_qkey;
    u16            pkey_index; /* valid for GSI only */
    u32            port_num; /* valid for DR SMPs on switch only */
};

static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
{
    return container_of(wr, struct ib_ud_wr, wr);
}

struct ib_reg_wr {
    struct ib_send_wr    wr;
    struct ib_mr        *mr;
    u32            key;
    int            access;
};

static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
{
    return container_of(wr, struct ib_reg_wr, wr);
}

struct ib_recv_wr {
    struct ib_recv_wr      *next;
    union {
        u64        wr_id;
        struct ib_cqe    *wr_cqe;
    };
    struct ib_sge           *sg_list;
    int            num_sge;
};

enum ib_access_flags {
    IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
    IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
    IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
    IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
    IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
    IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
    IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
    IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
    IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
    IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
    IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,

    IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
    IB_ACCESS_SUPPORTED =
        ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
};

/*
 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
 * are hidden here instead of a uapi header!
 */
enum ib_mr_rereg_flags {
    IB_MR_REREG_TRANS    = 1,
    IB_MR_REREG_PD        = (1<<1),
    IB_MR_REREG_ACCESS    = (1<<2),
    IB_MR_REREG_SUPPORTED    = ((IB_MR_REREG_ACCESS << 1) - 1)
};

struct ib_umem;

enum rdma_remove_reason {
    /*
     * Userspace requested uobject deletion or initial try
     * to remove uobject via cleanup. Call could fail
     */
    RDMA_REMOVE_DESTROY,
    /* Context deletion. This call should delete the actual object itself */
    RDMA_REMOVE_CLOSE,
    /* Driver is being hot-unplugged. This call should delete the actual object itself */
    RDMA_REMOVE_DRIVER_REMOVE,
    /* uobj is being cleaned-up before being committed */
    RDMA_REMOVE_ABORT,
    /* The driver failed to destroy the uobject and is being disconnected */
    RDMA_REMOVE_DRIVER_FAILURE,
};

struct ib_rdmacg_object {
#ifdef CONFIG_CGROUP_RDMA
    struct rdma_cgroup    *cg;        /* owner rdma cgroup */
#endif
};

struct ib_ucontext {
    struct ib_device       *device;
    struct ib_uverbs_file  *ufile;

    struct ib_rdmacg_object    cg_obj;
    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct rdma_restrack_entry res;
    struct xarray mmap_xa;
};

struct ib_uobject {
    u64            user_handle;    /* handle given to us by userspace */
    /* ufile & ucontext owning this object */
    struct ib_uverbs_file  *ufile;
    /* FIXME, save memory: ufile->context == context */
    struct ib_ucontext     *context;    /* associated user context */
    void               *object;        /* containing object */
    struct list_head    list;        /* link to context's list */
    struct ib_rdmacg_object    cg_obj;        /* rdmacg object */
    int            id;        /* index into kernel idr */
    struct kref        ref;
    atomic_t        usecnt;        /* protects exclusive access */
    struct rcu_head        rcu;        /* kfree_rcu() overhead */

    const struct uverbs_api_object *uapi_object;
};

struct ib_udata {
    const void __user *inbuf;
    void __user *outbuf;
    size_t       inlen;
    size_t       outlen;
};

struct ib_pd {
    u32            local_dma_lkey;
    u32            flags;
    struct ib_device       *device;
    struct ib_uobject      *uobject;
    atomic_t              usecnt; /* count all resources */

    u32            unsafe_global_rkey;

    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct ib_mr           *__internal_mr;
    struct rdma_restrack_entry res;
};

struct ib_xrcd {
    struct ib_device       *device;
    atomic_t        usecnt; /* count all exposed resources */
    struct inode           *inode;
    struct rw_semaphore    tgt_qps_rwsem;
    struct xarray        tgt_qps;
};

struct ib_ah {
    struct ib_device    *device;
    struct ib_pd        *pd;
    struct ib_uobject    *uobject;
    const struct ib_gid_attr *sgid_attr;
    enum rdma_ah_attr_type    type;
};

typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);

enum ib_poll_context {
    IB_POLL_SOFTIRQ,       /* poll from softirq context */
    IB_POLL_WORKQUEUE,       /* poll from workqueue */
    IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
    IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,

    IB_POLL_DIRECT,           /* caller context, no hw completions */
};

struct ib_cq {
    struct ib_device       *device;
    struct ib_ucq_object   *uobject;
    ib_comp_handler       comp_handler;
    void                  (*event_handler)(struct ib_event *, void *);
    void                   *cq_context;
    int                   cqe;
    unsigned int        cqe_used;
    atomic_t              usecnt; /* count number of work queues */
    enum ib_poll_context    poll_ctx;
    struct ib_wc        *wc;
    struct list_head        pool_entry;
    union {
        struct irq_poll        iop;
        struct work_struct    work;
    };
    struct workqueue_struct *comp_wq;
    struct dim *dim;

    /* updated only by trace points */
    ktime_t timestamp;
    u8 interrupt:1;
    u8 shared:1;
    unsigned int comp_vector;

    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct rdma_restrack_entry res;
};

struct ib_srq {
    struct ib_device       *device;
    struct ib_pd           *pd;
    struct ib_usrq_object  *uobject;
    void              (*event_handler)(struct ib_event *, void *);
    void               *srq_context;
    enum ib_srq_type    srq_type;
    atomic_t        usecnt;

    struct {
        struct ib_cq   *cq;
        union {
            struct {
                struct ib_xrcd *xrcd;
                u32        srq_num;
            } xrc;
        };
    } ext;

    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct rdma_restrack_entry res;
};

enum ib_raw_packet_caps {
    /*
     * Strip cvlan from incoming packet and report it in the matching work
     * completion is supported.
     */
    IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
        IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
    /*
     * Scatter FCS field of an incoming packet to host memory is supported.
     */
    IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
    /* Checksum offloads are supported (for both send and receive). */
    IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
    /*
     * When a packet is received for an RQ with no receive WQEs, the
     * packet processing is delayed.
     */
    IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
};

enum ib_wq_type {
    IB_WQT_RQ = IB_UVERBS_WQT_RQ,
};

enum ib_wq_state {
    IB_WQS_RESET,
    IB_WQS_RDY,
    IB_WQS_ERR
};

struct ib_wq {
    struct ib_device       *device;
    struct ib_uwq_object   *uobject;
    void            *wq_context;
    void            (*event_handler)(struct ib_event *, void *);
    struct ib_pd           *pd;
    struct ib_cq           *cq;
    u32        wq_num;
    enum ib_wq_state       state;
    enum ib_wq_type    wq_type;
    atomic_t        usecnt;
};

enum ib_wq_flags {
    IB_WQ_FLAGS_CVLAN_STRIPPING    = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
    IB_WQ_FLAGS_SCATTER_FCS        = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
    IB_WQ_FLAGS_DELAY_DROP        = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
    IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
                IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
};

struct ib_wq_init_attr {
    void               *wq_context;
    enum ib_wq_type    wq_type;
    u32        max_wr;
    u32        max_sge;
    struct    ib_cq           *cq;
    void            (*event_handler)(struct ib_event *, void *);
    u32        create_flags; /* Use enum ib_wq_flags */
};

enum ib_wq_attr_mask {
    IB_WQ_STATE        = 1 << 0,
    IB_WQ_CUR_STATE        = 1 << 1,
    IB_WQ_FLAGS        = 1 << 2,
};

struct ib_wq_attr {
    enum    ib_wq_state    wq_state;
    enum    ib_wq_state    curr_wq_state;
    u32            flags; /* Use enum ib_wq_flags */
    u32            flags_mask; /* Use enum ib_wq_flags */
};

struct ib_rwq_ind_table {
    struct ib_device    *device;
    struct ib_uobject      *uobject;
    atomic_t        usecnt;
    u32        ind_tbl_num;
    u32        log_ind_tbl_size;
    struct ib_wq    **ind_tbl;
};

struct ib_rwq_ind_table_init_attr {
    u32        log_ind_tbl_size;
    /* Each entry is a pointer to Receive Work Queue */
    struct ib_wq    **ind_tbl;
};

enum port_pkey_state {
    IB_PORT_PKEY_NOT_VALID = 0,
    IB_PORT_PKEY_VALID = 1,
    IB_PORT_PKEY_LISTED = 2,
};

struct ib_qp_security;

struct ib_port_pkey {
    enum port_pkey_state    state;
    u16            pkey_index;
    u32            port_num;
    struct list_head    qp_list;
    struct list_head    to_error_list;
    struct ib_qp_security  *sec;
};

struct ib_ports_pkeys {
    struct ib_port_pkey    main;
    struct ib_port_pkey    alt;
};

struct ib_qp_security {
    struct ib_qp           *qp;
    struct ib_device       *dev;
    /* Hold this mutex when changing port and pkey settings. */
    struct mutex        mutex;
    struct ib_ports_pkeys  *ports_pkeys;
    /* A list of all open shared QP handles.  Required to enforce security
     * properly for all users of a shared QP.
     */
    struct list_head        shared_qp_list;
    void                   *security;
    bool            destroying;
    atomic_t        error_list_count;
    struct completion    error_complete;
    int            error_comps_pending;
};

/*
 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
 */
struct ib_qp {
    struct ib_device       *device;
    struct ib_pd           *pd;
    struct ib_cq           *send_cq;
    struct ib_cq           *recv_cq;
    spinlock_t        mr_lock;
    int            mrs_used;
    struct list_head    rdma_mrs;
    struct list_head    sig_mrs;
    struct ib_srq           *srq;
    struct ib_xrcd           *xrcd; /* XRC TGT QPs only */
    struct list_head    xrcd_list;

    /* count times opened, mcast attaches, flow attaches */
    atomic_t        usecnt;
    struct list_head    open_list;
    struct ib_qp           *real_qp;
    struct ib_uqp_object   *uobject;
    void                  (*event_handler)(struct ib_event *, void *);
    void               *qp_context;
    /* sgid_attrs associated with the AV's */
    const struct ib_gid_attr *av_sgid_attr;
    const struct ib_gid_attr *alt_path_sgid_attr;
    u32            qp_num;
    u32            max_write_sge;
    u32            max_read_sge;
    enum ib_qp_type        qp_type;
    struct ib_rwq_ind_table *rwq_ind_tbl;
    struct ib_qp_security  *qp_sec;
    u32            port;

    bool            integrity_en;
    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct rdma_restrack_entry     res;

    /* The counter the qp is bind to */
    struct rdma_counter    *counter;
};

struct ib_dm {
    struct ib_device  *device;
    u32           length;
    u32           flags;
    struct ib_uobject *uobject;
    atomic_t       usecnt;
};

struct ib_mr {
    struct ib_device  *device;
    struct ib_pd      *pd;
    u32           lkey;
    u32           rkey;
    u64           iova;
    u64           length;
    unsigned int       page_size;
    enum ib_mr_type       type;
    bool           need_inval;
    union {
        struct ib_uobject    *uobject;    /* user */
        struct list_head    qp_entry;    /* FR */
    };

    struct ib_dm      *dm;
    struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
    /*
     * Implementation details of the RDMA core, don't use in drivers:
     */
    struct rdma_restrack_entry res;
};

struct ib_mw {
    struct ib_device    *device;
    struct ib_pd        *pd;
    struct ib_uobject    *uobject;
    u32            rkey;
    enum ib_mw_type         type;
};

/* Supported steering options */
enum ib_flow_attr_type {
    /* steering according to rule specifications */
    IB_FLOW_ATTR_NORMAL        = 0x0,
    /* default unicast and multicast rule -
     * receive all Eth traffic which isn't steered to any QP
     */
    IB_FLOW_ATTR_ALL_DEFAULT    = 0x1,
    /* default multicast rule -
     * receive all Eth multicast traffic which isn't steered to any QP
     */
    IB_FLOW_ATTR_MC_DEFAULT        = 0x2,
    /* sniffer rule - receive all port traffic */
    IB_FLOW_ATTR_SNIFFER        = 0x3
};

/* Supported steering header types */
enum ib_flow_spec_type {
    /* L2 headers*/
    IB_FLOW_SPEC_ETH        = 0x20,
    IB_FLOW_SPEC_IB            = 0x22,
    /* L3 header*/
    IB_FLOW_SPEC_IPV4        = 0x30,
    IB_FLOW_SPEC_IPV6        = 0x31,
    IB_FLOW_SPEC_ESP                = 0x34,
    /* L4 headers*/
    IB_FLOW_SPEC_TCP        = 0x40,
    IB_FLOW_SPEC_UDP        = 0x41,
    IB_FLOW_SPEC_VXLAN_TUNNEL    = 0x50,
    IB_FLOW_SPEC_GRE        = 0x51,
    IB_FLOW_SPEC_MPLS        = 0x60,
    IB_FLOW_SPEC_INNER        = 0x100,
    /* Actions */
    IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
    IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
    IB_FLOW_SPEC_ACTION_HANDLE    = 0x1002,
    IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
};
#define IB_FLOW_SPEC_LAYER_MASK    0xF0
#define IB_FLOW_SPEC_SUPPORT_LAYERS 10

enum ib_flow_flags {
    IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
    IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
    IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
};

struct ib_flow_eth_filter {
    u8    dst_mac[6];
    u8    src_mac[6];
    __be16    ether_type;
    __be16    vlan_tag;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_eth {
    u32              type;
    u16              size;
    struct ib_flow_eth_filter val;
    struct ib_flow_eth_filter mask;
};

struct ib_flow_ib_filter {
    __be16 dlid;
    __u8   sl;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_ib {
    u32             type;
    u16             size;
    struct ib_flow_ib_filter val;
    struct ib_flow_ib_filter mask;
};

/* IPv4 header flags */
enum ib_ipv4_flags {
    IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
    IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
                    last have this flag set */
};

struct ib_flow_ipv4_filter {
    __be32    src_ip;
    __be32    dst_ip;
    u8    proto;
    u8    tos;
    u8    ttl;
    u8    flags;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_ipv4 {
    u32               type;
    u16               size;
    struct ib_flow_ipv4_filter val;
    struct ib_flow_ipv4_filter mask;
};

struct ib_flow_ipv6_filter {
    u8    src_ip[16];
    u8    dst_ip[16];
    __be32    flow_label;
    u8    next_hdr;
    u8    traffic_class;
    u8    hop_limit;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_ipv6 {
    u32               type;
    u16               size;
    struct ib_flow_ipv6_filter val;
    struct ib_flow_ipv6_filter mask;
};

struct ib_flow_tcp_udp_filter {
    __be16    dst_port;
    __be16    src_port;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_tcp_udp {
    u32                  type;
    u16                  size;
    struct ib_flow_tcp_udp_filter val;
    struct ib_flow_tcp_udp_filter mask;
};

struct ib_flow_tunnel_filter {
    __be32    tunnel_id;
    u8    real_sz[];
};

/* ib_flow_spec_tunnel describes the Vxlan tunnel
 * the tunnel_id from val has the vni value
 */
struct ib_flow_spec_tunnel {
    u32                  type;
    u16                  size;
    struct ib_flow_tunnel_filter  val;
    struct ib_flow_tunnel_filter  mask;
};

struct ib_flow_esp_filter {
    __be32    spi;
    __be32  seq;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_esp {
    u32                           type;
    u16                  size;
    struct ib_flow_esp_filter     val;
    struct ib_flow_esp_filter     mask;
};

struct ib_flow_gre_filter {
    __be16 c_ks_res0_ver;
    __be16 protocol;
    __be32 key;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_gre {
    u32                           type;
    u16                  size;
    struct ib_flow_gre_filter     val;
    struct ib_flow_gre_filter     mask;
};

struct ib_flow_mpls_filter {
    __be32 tag;
    /* Must be last */
    u8    real_sz[];
};

struct ib_flow_spec_mpls {
    u32                           type;
    u16                  size;
    struct ib_flow_mpls_filter     val;
    struct ib_flow_mpls_filter     mask;
};

struct ib_flow_spec_action_tag {
    enum ib_flow_spec_type          type;
    u16                  size;
    u32                           tag_id;
};

struct ib_flow_spec_action_drop {
    enum ib_flow_spec_type          type;
    u16                  size;
};

struct ib_flow_spec_action_handle {
    enum ib_flow_spec_type          type;
    u16                  size;
    struct ib_flow_action         *act;
};

enum ib_counters_description {
    IB_COUNTER_PACKETS,
    IB_COUNTER_BYTES,
};

struct ib_flow_spec_action_count {
    enum ib_flow_spec_type type;
    u16 size;
    struct ib_counters *counters;
};

union ib_flow_spec {
    struct {
        u32            type;
        u16            size;
    };
    struct ib_flow_spec_eth        eth;
    struct ib_flow_spec_ib        ib;
    struct ib_flow_spec_ipv4        ipv4;
    struct ib_flow_spec_tcp_udp    tcp_udp;
    struct ib_flow_spec_ipv6        ipv6;
    struct ib_flow_spec_tunnel      tunnel;
    struct ib_flow_spec_esp        esp;
    struct ib_flow_spec_gre        gre;
    struct ib_flow_spec_mpls    mpls;
    struct ib_flow_spec_action_tag  flow_tag;
    struct ib_flow_spec_action_drop drop;
    struct ib_flow_spec_action_handle action;
    struct ib_flow_spec_action_count flow_count;
};

struct ib_flow_attr {
    enum ib_flow_attr_type type;
    u16         size;
    u16         priority;
    u32         flags;
    u8         num_of_specs;
    u32         port;
    union ib_flow_spec flows[];
};

struct ib_flow {
    struct ib_qp        *qp;
    struct ib_device    *device;
    struct ib_uobject    *uobject;
};

enum ib_flow_action_type {
    IB_FLOW_ACTION_UNSPECIFIED,
    IB_FLOW_ACTION_ESP = 1,
};

struct ib_flow_action_attrs_esp_keymats {
    enum ib_uverbs_flow_action_esp_keymat            protocol;
    union {
        struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
    } keymat;
};

struct ib_flow_action_attrs_esp_replays {
    enum ib_uverbs_flow_action_esp_replay            protocol;
    union {
        struct ib_uverbs_flow_action_esp_replay_bmp    bmp;
    } replay;
};

enum ib_flow_action_attrs_esp_flags {
    /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
     * This is done in order to share the same flags between user-space and
     * kernel and spare an unnecessary translation.
     */

    /* Kernel flags */
    IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED    = 1ULL << 32,
    IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS    = 1ULL << 33,
};

struct ib_flow_spec_list {
    struct ib_flow_spec_list    *next;
    union ib_flow_spec        spec;
};

struct ib_flow_action_attrs_esp {
    struct ib_flow_action_attrs_esp_keymats        *keymat;
    struct ib_flow_action_attrs_esp_replays        *replay;
    struct ib_flow_spec_list            *encap;
    /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
     * Value of 0 is a valid value.
     */
    u32                        esn;
    u32                        spi;
    u32                        seq;
    u32                        tfc_pad;
    /* Use enum ib_flow_action_attrs_esp_flags */
    u64                        flags;
    u64                        hard_limit_pkts;
};

struct ib_flow_action {
    struct ib_device        *device;
    struct ib_uobject        *uobject;
    enum ib_flow_action_type    type;
    atomic_t            usecnt;
};

struct ib_mad;

enum ib_process_mad_flags {
    IB_MAD_IGNORE_MKEY    = 1,
    IB_MAD_IGNORE_BKEY    = 2,
    IB_MAD_IGNORE_ALL    = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
};

enum ib_mad_result {
    IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
    IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
    IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
    IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
};

struct ib_port_cache {
    u64              subnet_prefix;
    struct ib_pkey_cache  *pkey;
    struct ib_gid_table   *gid;
    u8                     lmc;
    enum ib_port_state     port_state;
};

struct ib_port_immutable {
    int                           pkey_tbl_len;
    int                           gid_tbl_len;
    u32                           core_cap_flags;
    u32                           max_mad_size;
};

struct ib_port_data {
    struct ib_device *ib_dev;

    struct ib_port_immutable immutable;

    spinlock_t pkey_list_lock;

    spinlock_t netdev_lock;

    struct list_head pkey_list;

    struct ib_port_cache cache;

    struct net_device __rcu *netdev;
    netdevice_tracker netdev_tracker;
    struct hlist_node ndev_hash_link;
    struct rdma_port_counter port_counter;
    struct ib_port *sysfs;
};

/* rdma netdev type - specifies protocol type */
enum rdma_netdev_t {
    RDMA_NETDEV_OPA_VNIC,
    RDMA_NETDEV_IPOIB,
};

/**
 * struct rdma_netdev - rdma netdev
 * For cases where netstack interfacing is required.
 */
struct rdma_netdev {
    void              *clnt_priv;
    struct ib_device  *hca;
    u32           port_num;
    int                mtu;

    /*
     * cleanup function must be specified.
     * FIXME: This is only used for OPA_VNIC and that usage should be
     * removed too.
     */
    void (*free_rdma_netdev)(struct net_device *netdev);

    /* control functions */
    void (*set_id)(struct net_device *netdev, int id);
    /* send packet */
    int (*send)(struct net_device *dev, struct sk_buff *skb,
            struct ib_ah *address, u32 dqpn);
    /* multicast */
    int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
                union ib_gid *gid, u16 mlid,
                int set_qkey, u32 qkey);
    int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
                union ib_gid *gid, u16 mlid);
    /* timeout */
    void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
};

struct rdma_netdev_alloc_params {
    size_t sizeof_priv;
    unsigned int txqs;
    unsigned int rxqs;
    void *param;

    int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
                      struct net_device *netdev, void *param);
};

struct ib_odp_counters {
    atomic64_t faults;
    atomic64_t invalidations;
    atomic64_t prefetch;
};

struct ib_counters {
    struct ib_device    *device;
    struct ib_uobject    *uobject;
    /* num of objects attached */
    atomic_t    usecnt;
};

struct ib_counters_read_attr {
    u64    *counters_buff;
    u32    ncounters;
    u32    flags; /* use enum ib_read_counters_flags */
};

struct uverbs_attr_bundle;
struct iw_cm_id;
struct iw_cm_conn_param;

#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
    .size_##ib_struct =                                                    \
        (sizeof(struct drv_struct) +                                   \
         BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
         BUILD_BUG_ON_ZERO(                                            \
             !__same_type(((struct drv_struct *)NULL)->member,     \
                      struct ib_struct)))

#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
    ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
                       gfp, false))

#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
    ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
                       GFP_KERNEL, true))

#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
    rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)

#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct

struct rdma_user_mmap_entry {
    struct kref ref;
    struct ib_ucontext *ucontext;
    unsigned long start_pgoff;
    size_t npages;
    bool driver_removed;
};

/* Return the offset (in bytes) the user should pass to libc's mmap() */
static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
{
    return (u64)entry->start_pgoff << PAGE_SHIFT;
}

/**
 * struct ib_device_ops - InfiniBand device operations
 * This structure defines all the InfiniBand device operations, providers will
 * need to define the supported operations, otherwise they will be set to null.
 */
struct ib_device_ops {
    struct module *owner;
    enum rdma_driver_id driver_id;
    u32 uverbs_abi_ver;
    unsigned int uverbs_no_driver_id_binding:1;

    /*
     * NOTE: New drivers should not make use of device_group; instead new
     * device parameter should be exposed via netlink command. This
     * mechanism exists only for existing drivers.
     */
    const struct attribute_group *device_group;
    const struct attribute_group **port_groups;

    int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
             const struct ib_send_wr **bad_send_wr);
    int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
             const struct ib_recv_wr **bad_recv_wr);
    void (*drain_rq)(struct ib_qp *qp);
    void (*drain_sq)(struct ib_qp *qp);
    int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
    int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
    int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
    int (*post_srq_recv)(struct ib_srq *srq,
                 const struct ib_recv_wr *recv_wr,
                 const struct ib_recv_wr **bad_recv_wr);
    int (*process_mad)(struct ib_device *device, int process_mad_flags,
               u32 port_num, const struct ib_wc *in_wc,
               const struct ib_grh *in_grh,
               const struct ib_mad *in_mad, struct ib_mad *out_mad,
               size_t *out_mad_size, u16 *out_mad_pkey_index);
    int (*query_device)(struct ib_device *device,
                struct ib_device_attr *device_attr,
                struct ib_udata *udata);
    int (*modify_device)(struct ib_device *device, int device_modify_mask,
                 struct ib_device_modify *device_modify);
    void (*get_dev_fw_str)(struct ib_device *device, char *str);
    const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
                             int comp_vector);
    int (*query_port)(struct ib_device *device, u32 port_num,
              struct ib_port_attr *port_attr);
    int (*modify_port)(struct ib_device *device, u32 port_num,
               int port_modify_mask,
               struct ib_port_modify *port_modify);
    /**
     * The following mandatory functions are used only at device
     * registration.  Keep functions such as these at the end of this
     * structure to avoid cache line misses when accessing struct ib_device
     * in fast paths.
     */
    int (*get_port_immutable)(struct ib_device *device, u32 port_num,
                  struct ib_port_immutable *immutable);
    enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
                           u32 port_num);
    /**
     * When calling get_netdev, the HW vendor's driver should return the
     * net device of device @device at port @port_num or NULL if such
     * a net device doesn't exist. The vendor driver should call dev_hold
     * on this net device. The HW vendor's device driver must guarantee
     * that this function returns NULL before the net device has finished
     * NETDEV_UNREGISTER state.
     */
    struct net_device *(*get_netdev)(struct ib_device *device,
                     u32 port_num);
    /**
     * rdma netdev operation
     *
     * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
     * must return -EOPNOTSUPP if it doesn't support the specified type.
     */
    struct net_device *(*alloc_rdma_netdev)(
        struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
        const char *name, unsigned char name_assign_type,
        void (*setup)(struct net_device *));

    int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
                      enum rdma_netdev_t type,
                      struct rdma_netdev_alloc_params *params);
    /**
     * query_gid should be return GID value for @device, when @port_num
     * link layer is either IB or iWarp. It is no-op if @port_num port
     * is RoCE link layer.
     */
    int (*query_gid)(struct ib_device *device, u32 port_num, int index,
             union ib_gid *gid);
    /**
     * When calling add_gid, the HW vendor's driver should add the gid
     * of device of port at gid index available at @attr. Meta-info of
     * that gid (for example, the network device related to this gid) is
     * available at @attr. @context allows the HW vendor driver to store
     * extra information together with a GID entry. The HW vendor driver may
     * allocate memory to contain this information and store it in @context
     * when a new GID entry is written to. Params are consistent until the
     * next call of add_gid or delete_gid. The function should return 0 on
     * success or error otherwise. The function could be called
     * concurrently for different ports. This function is only called when
     * roce_gid_table is used.
     */
    int (*add_gid)(const struct ib_gid_attr *attr, void **context);
    /**
     * When calling del_gid, the HW vendor's driver should delete the
     * gid of device @device at gid index gid_index of port port_num
     * available in @attr.
     * Upon the deletion of a GID entry, the HW vendor must free any
     * allocated memory. The caller will clear @context afterwards.
     * This function is only called when roce_gid_table is used.
     */
    int (*del_gid)(const struct ib_gid_attr *attr, void **context);
    int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
              u16 *pkey);
    int (*alloc_ucontext)(struct ib_ucontext *context,
                  struct ib_udata *udata);
    void (*dealloc_ucontext)(struct ib_ucontext *context);
    int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
    /**
     * This will be called once refcount of an entry in mmap_xa reaches
     * zero. The type of the memory that was mapped may differ between
     * entries and is opaque to the rdma_user_mmap interface.
     * Therefore needs to be implemented by the driver in mmap_free.
     */
    void (*mmap_free)(struct rdma_user_mmap_entry *entry);
    void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
    int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
    int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
    int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
             struct ib_udata *udata);
    int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
                  struct ib_udata *udata);
    int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
    int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
    int (*destroy_ah)(struct ib_ah *ah, u32 flags);
    int (*create_srq)(struct ib_srq *srq,
              struct ib_srq_init_attr *srq_init_attr,
              struct ib_udata *udata);
    int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
              enum ib_srq_attr_mask srq_attr_mask,
              struct ib_udata *udata);
    int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
    int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
    int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
             struct ib_udata *udata);
    int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
             int qp_attr_mask, struct ib_udata *udata);
    int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
            int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
    int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
    int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
             struct ib_udata *udata);
    int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
    int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
    int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
    struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
    struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
                     u64 virt_addr, int mr_access_flags,
                     struct ib_udata *udata);
    struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
                        u64 length, u64 virt_addr, int fd,
                        int mr_access_flags,
                        struct ib_udata *udata);
    struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
                       u64 length, u64 virt_addr,
                       int mr_access_flags, struct ib_pd *pd,
                       struct ib_udata *udata);
    int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
    struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
                  u32 max_num_sg);
    struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
                        u32 max_num_data_sg,
                        u32 max_num_meta_sg);
    int (*advise_mr)(struct ib_pd *pd,
             enum ib_uverbs_advise_mr_advice advice, u32 flags,
             struct ib_sge *sg_list, u32 num_sge,
             struct uverbs_attr_bundle *attrs);

    /*
     * Kernel users should universally support relaxed ordering (RO), as
     * they are designed to read data only after observing the CQE and use
     * the DMA API correctly.
     *
     * Some drivers implicitly enable RO if platform supports it.
     */
    int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
             unsigned int *sg_offset);
    int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
                   struct ib_mr_status *mr_status);
    int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
    int (*dealloc_mw)(struct ib_mw *mw);
    int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
    int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
    int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
    int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
    struct ib_flow *(*create_flow)(struct ib_qp *qp,
                       struct ib_flow_attr *flow_attr,
                       struct ib_udata *udata);
    int (*destroy_flow)(struct ib_flow *flow_id);
    int (*destroy_flow_action)(struct ib_flow_action *action);
    int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
                 int state);
    int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
                 struct ifla_vf_info *ivf);
    int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
                struct ifla_vf_stats *stats);
    int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
                struct ifla_vf_guid *node_guid,
                struct ifla_vf_guid *port_guid);
    int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
               int type);
    struct ib_wq *(*create_wq)(struct ib_pd *pd,
                   struct ib_wq_init_attr *init_attr,
                   struct ib_udata *udata);
    int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
    int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
             u32 wq_attr_mask, struct ib_udata *udata);
    int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
                    struct ib_rwq_ind_table_init_attr *init_attr,
                    struct ib_udata *udata);
    int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
    struct ib_dm *(*alloc_dm)(struct ib_device *device,
                  struct ib_ucontext *context,
                  struct ib_dm_alloc_attr *attr,
                  struct uverbs_attr_bundle *attrs);
    int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
    struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
                   struct ib_dm_mr_attr *attr,
                   struct uverbs_attr_bundle *attrs);
    int (*create_counters)(struct ib_counters *counters,
                   struct uverbs_attr_bundle *attrs);
    int (*destroy_counters)(struct ib_counters *counters);
    int (*read_counters)(struct ib_counters *counters,
                 struct ib_counters_read_attr *counters_read_attr,
                 struct uverbs_attr_bundle *attrs);
    int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
                int data_sg_nents, unsigned int *data_sg_offset,
                struct scatterlist *meta_sg, int meta_sg_nents,
                unsigned int *meta_sg_offset);

    /**
     * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
     *   fill in the driver initialized data.  The struct is kfree()'ed by
     *   the sysfs core when the device is removed.  A lifespan of -1 in the
     *   return struct tells the core to set a default lifespan.
     */
    struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
    struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
                             u32 port_num);
    /**
     * get_hw_stats - Fill in the counter value(s) in the stats struct.
     * @index - The index in the value array we wish to have updated, or
     *   num_counters if we want all stats updated
     * Return codes -
     *   < 0 - Error, no counters updated
     *   index - Updated the single counter pointed to by index
     *   num_counters - Updated all counters (will reset the timestamp
     *     and prevent further calls for lifespan milliseconds)
     * Drivers are allowed to update all counters in leiu of just the
     *   one given in index at their option
     */
    int (*get_hw_stats)(struct ib_device *device,
                struct rdma_hw_stats *stats, u32 port, int index);

    /**
     * modify_hw_stat - Modify the counter configuration
     * @enable: true/false when enable/disable a counter
     * Return codes - 0 on success or error code otherwise.
     */
    int (*modify_hw_stat)(struct ib_device *device, u32 port,
                  unsigned int counter_index, bool enable);
    /**
     * Allows rdma drivers to add their own restrack attributes.
     */
    int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
    int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
    int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
    int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
    int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
    int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
    int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
    int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
    int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);

    /* Device lifecycle callbacks */
    /*
     * Called after the device becomes registered, before clients are
     * attached
     */
    int (*enable_driver)(struct ib_device *dev);
    /*
     * This is called as part of ib_dealloc_device().
     */
    void (*dealloc_driver)(struct ib_device *dev);

    /* iWarp CM callbacks */
    void (*iw_add_ref)(struct ib_qp *qp);
    void (*iw_rem_ref)(struct ib_qp *qp);
    struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
    int (*iw_connect)(struct iw_cm_id *cm_id,
              struct iw_cm_conn_param *conn_param);
    int (*iw_accept)(struct iw_cm_id *cm_id,
             struct iw_cm_conn_param *conn_param);
    int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
             u8 pdata_len);
    int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
    int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
    /**
     * counter_bind_qp - Bind a QP to a counter.
     * @counter - The counter to be bound. If counter->id is zero then
     *   the driver needs to allocate a new counter and set counter->id
     */
    int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
    /**
     * counter_unbind_qp - Unbind the qp from the dynamically-allocated
     *   counter and bind it onto the default one
     */
    int (*counter_unbind_qp)(struct ib_qp *qp);
    /**
     * counter_dealloc -De-allocate the hw counter
     */
    int (*counter_dealloc)(struct rdma_counter *counter);
    /**
     * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
     * the driver initialized data.
     */
    struct rdma_hw_stats *(*counter_alloc_stats)(
        struct rdma_counter *counter);
    /**
     * counter_update_stats - Query the stats value of this counter
     */
    int (*counter_update_stats)(struct rdma_counter *counter);

    /**
     * Allows rdma drivers to add their own restrack attributes
     * dumped via 'rdma stat' iproute2 command.
     */
    int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);

    /* query driver for its ucontext properties */
    int (*query_ucontext)(struct ib_ucontext *context,
                  struct uverbs_attr_bundle *attrs);

    /*
     * Provide NUMA node. This API exists for rdmavt/hfi1 only.
     * Everyone else relies on Linux memory management model.
     */
    int (*get_numa_node)(struct ib_device *dev);

    DECLARE_RDMA_OBJ_SIZE(ib_ah);
    DECLARE_RDMA_OBJ_SIZE(ib_counters);
    DECLARE_RDMA_OBJ_SIZE(ib_cq);
    DECLARE_RDMA_OBJ_SIZE(ib_mw);
    DECLARE_RDMA_OBJ_SIZE(ib_pd);
    DECLARE_RDMA_OBJ_SIZE(ib_qp);
    DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
    DECLARE_RDMA_OBJ_SIZE(ib_srq);
    DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
    DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
};

struct ib_core_device {
    /* device must be the first element in structure until,
     * union of ib_core_device and device exists in ib_device.
     */
    struct device dev;
    possible_net_t rdma_net;
    struct kobject *ports_kobj;
    struct list_head port_list;
    struct ib_device *owner; /* reach back to owner ib_device */
};

struct rdma_restrack_root;
struct ib_device {
    /* Do not access @dma_device directly from ULP nor from HW drivers. */
    struct device                *dma_device;
    struct ib_device_ops         ops;
    char                          name[IB_DEVICE_NAME_MAX];
    struct rcu_head rcu_head;

    struct list_head              event_handler_list;
    /* Protects event_handler_list */
    struct rw_semaphore event_handler_rwsem;

    /* Protects QP's event_handler calls and open_qp list */
    spinlock_t qp_open_list_lock;

    struct rw_semaphore          client_data_rwsem;
    struct xarray                 client_data;
    struct mutex                  unregistration_lock;

    /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
    rwlock_t cache_lock;
    /**
     * port_data is indexed by port number
     */
    struct ib_port_data *port_data;

    int                  num_comp_vectors;

    union {
        struct device        dev;
        struct ib_core_device    coredev;
    };

    /* First group is for device attributes,
     * Second group is for driver provided attributes (optional).
     * Third group is for the hw_stats
     * It is a NULL terminated array.
     */
    const struct attribute_group    *groups[4];

    u64                 uverbs_cmd_mask;

    char                 node_desc[IB_DEVICE_NODE_DESC_MAX];
    __be64                 node_guid;
    u32                 local_dma_lkey;
    u16                          is_switch:1;
    /* Indicates kernel verbs support, should not be used in drivers */
    u16                          kverbs_provider:1;
    /* CQ adaptive moderation (RDMA DIM) */
    u16                          use_cq_dim:1;
    u8                           node_type;
    u32                 phys_port_cnt;
    struct ib_device_attr        attrs;
    struct hw_stats_device_data *hw_stats_data;

#ifdef CONFIG_CGROUP_RDMA
    struct rdmacg_device         cg_device;
#endif

    u32                          index;

    spinlock_t                   cq_pools_lock;
    struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];

    struct rdma_restrack_root *res;

    const struct uapi_definition   *driver_def;

    /*
     * Positive refcount indicates that the device is currently
     * registered and cannot be unregistered.
     */
    refcount_t refcount;
    struct completion unreg_completion;
    struct work_struct unregistration_work;

    const struct rdma_link_ops *link_ops;

    /* Protects compat_devs xarray modifications */
    struct mutex compat_devs_mutex;
    /* Maintains compat devices for each net namespace */
    struct xarray compat_devs;

    /* Used by iWarp CM */
    char iw_ifname[IFNAMSIZ];
    u32 iw_driver_flags;
    u32 lag_flags;
};

static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
                    gfp_t gfp, bool is_numa_aware)
{
    if (is_numa_aware && dev->ops.get_numa_node)
        return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));

    return kzalloc(size, gfp);
}

struct ib_client_nl_info;
struct ib_client {
    const char *name;
    int (*add)(struct ib_device *ibdev);
    void (*remove)(struct ib_device *, void *client_data);
    void (*rename)(struct ib_device *dev, void *client_data);
    int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
               struct ib_client_nl_info *res);
    int (*get_global_nl_info)(struct ib_client_nl_info *res);

    /* Returns the net_dev belonging to this ib_client and matching the
     * given parameters.
     * @dev:     An RDMA device that the net_dev use for communication.
     * @port:     A physical port number on the RDMA device.
     * @pkey:     P_Key that the net_dev uses if applicable.
     * @gid:     A GID that the net_dev uses to communicate.
     * @addr:     An IP address the net_dev is configured with.
     * @client_data: The device's client data set by ib_set_client_data().
     *
     * An ib_client that implements a net_dev on top of RDMA devices
     * (such as IP over IB) should implement this callback, allowing the
     * rdma_cm module to find the right net_dev for a given request.
     *
     * The caller is responsible for calling dev_put on the returned
     * netdev. */
    struct net_device *(*get_net_dev_by_params)(
            struct ib_device *dev,
            u32 port,
            u16 pkey,
            const union ib_gid *gid,
            const struct sockaddr *addr,
            void *client_data);

    refcount_t uses;
    struct completion uses_zero;
    u32 client_id;

    /* kverbs are not required by the client */
    u8 no_kverbs_req:1;
};

/*
 * IB block DMA iterator
 *
 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
 * to a HW supported page size.
 */
struct ib_block_iter {
    /* internal states */
    struct scatterlist *__sg;    /* sg holding the current aligned block */
    dma_addr_t __dma_addr;        /* unaligned DMA address of this block */
    size_t __sg_numblocks;        /* ib_umem_num_dma_blocks() */
    unsigned int __sg_nents;    /* number of SG entries */
    unsigned int __sg_advance;    /* number of bytes to advance in sg in next step */
    unsigned int __pg_bit;        /* alignment of current block */
};

struct ib_device *_ib_alloc_device(size_t size);
#define ib_alloc_device(drv_struct, member)                                    \
    container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
                      BUILD_BUG_ON_ZERO(offsetof(              \
                          struct drv_struct, member))),    \
             struct drv_struct, member)

void ib_dealloc_device(struct ib_device *device);

void ib_get_device_fw_str(struct ib_device *device, char *str);

int ib_register_device(struct ib_device *device, const char *name,
               struct device *dma_device);
void ib_unregister_device(struct ib_device *device);
void ib_unregister_driver(enum rdma_driver_id driver_id);
void ib_unregister_device_and_put(struct ib_device *device);
void ib_unregister_device_queued(struct ib_device *ib_dev);

int ib_register_client   (struct ib_client *client);
void ib_unregister_client(struct ib_client *client);

void __rdma_block_iter_start(struct ib_block_iter *biter,
                 struct scatterlist *sglist,
                 unsigned int nents,
                 unsigned long pgsz);
bool __rdma_block_iter_next(struct ib_block_iter *biter);

/**
 * rdma_block_iter_dma_address - get the aligned dma address of the current
 * block held by the block iterator.
 * @biter: block iterator holding the memory block
 */
static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter *biter)
{
    return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
}

/**
 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
 * @sglist: sglist to iterate over
 * @biter: block iterator holding the memory block
 * @nents: maximum number of sg entries to iterate over
 * @pgsz: best HW supported page size to use
 *
 * Callers may use rdma_block_iter_dma_address() to get each
 * blocks aligned DMA address.
 */
#define rdma_for_each_block(sglist, biter, nents, pgsz)        \
    for (__rdma_block_iter_start(biter, sglist, nents,    \
                     pgsz);            \
         __rdma_block_iter_next(biter);)

/**
 * ib_get_client_data - Get IB client context
 * @device:Device to get context for
 * @client:Client to get context for
 *
 * ib_get_client_data() returns the client context data set with
 * ib_set_client_data(). This can only be called while the client is
 * registered to the device, once the ib_client remove() callback returns this
 * cannot be called.
 */
static inline void *ib_get_client_data(struct ib_device *device,
                       struct ib_client *client)
{
    return xa_load(&device->client_data, client->client_id);
}
void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
             void *data);
void ib_set_device_ops(struct ib_device *device,
               const struct ib_device_ops *ops);

int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
              unsigned long pfn, unsigned long size, pgprot_t prot,
              struct rdma_user_mmap_entry *entry);
int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
                struct rdma_user_mmap_entry *entry,
                size_t length);
int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
                      struct rdma_user_mmap_entry *entry,
                      size_t length, u32 min_pgoff,
                      u32 max_pgoff);

#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
void rdma_user_mmap_disassociate(struct ib_device *device);
#else
static inline void rdma_user_mmap_disassociate(struct ib_device *device)
{
}
#endif

static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
                  struct rdma_user_mmap_entry *entry,
                  size_t length, u32 pgoff)
{
    return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
                         pgoff);
}

struct rdma_user_mmap_entry *
rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
                   unsigned long pgoff);
struct rdma_user_mmap_entry *
rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
             struct vm_area_struct *vma);
void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);

void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);

static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
{
    return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
}

static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
{
    return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
}

static inline bool ib_is_buffer_cleared(const void __user *p,
                    size_t len)
{
    bool ret;
    u8 *buf;

    if (len > USHRT_MAX)
        return false;

    buf = memdup_user(p, len);
    if (IS_ERR(buf))
        return false;

    ret = !memchr_inv(buf, 0, len);
    kfree(buf);
    return ret;
}

static inline bool ib_is_udata_cleared(struct ib_udata *udata,
                       size_t offset,
                       size_t len)
{
    return ib_is_buffer_cleared(udata->inbuf + offset, len);
}

/**
 * ib_modify_qp_is_ok - Check that the supplied attribute mask
 * contains all required attributes and no attributes not allowed for
 * the given QP state transition.
 * @cur_state: Current QP state
 * @next_state: Next QP state
 * @type: QP type
 * @mask: Mask of supplied QP attributes
 *
 * This function is a helper function that a low-level driver's
 * modify_qp method can use to validate the consumer's input.  It
 * checks that cur_state and next_state are valid QP states, that a
 * transition from cur_state to next_state is allowed by the IB spec,
 * and that the attribute mask supplied is allowed for the transition.
 */
bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
            enum ib_qp_type type, enum ib_qp_attr_mask mask);

void ib_register_event_handler(struct ib_event_handler *event_handler);
void ib_unregister_event_handler(struct ib_event_handler *event_handler);
void ib_dispatch_event(const struct ib_event *event);

int ib_query_port(struct ib_device *device,
          u32 port_num, struct ib_port_attr *port_attr);

enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
                           u32 port_num);

/**
 * rdma_cap_ib_switch - Check if the device is IB switch
 * @device: Device to check
 *
 * Device driver is responsible for setting is_switch bit on
 * in ib_device structure at init time.
 *
 * Return: true if the device is IB switch.
 */
static inline bool rdma_cap_ib_switch(const struct ib_device *device)
{
    return device->is_switch;
}

/**
 * rdma_start_port - Return the first valid port number for the device
 * specified
 *
 * @device: Device to be checked
 *
 * Return start port number
 */
static inline u32 rdma_start_port(const struct ib_device *device)
{
    return rdma_cap_ib_switch(device) ? 0 : 1;
}

/**
 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
 * @device - The struct ib_device * to iterate over
 * @iter - The unsigned int to store the port number
 */
#define rdma_for_each_port(device, iter)                                       \
    for (iter = rdma_start_port(device +                       \
                    BUILD_BUG_ON_ZERO(!__same_type(u32,           \
                                   iter)));    \
         iter <= rdma_end_port(device); iter++)

/**
 * rdma_end_port - Return the last valid port number for the device
 * specified
 *
 * @device: Device to be checked
 *
 * Return last port number
 */
static inline u32 rdma_end_port(const struct ib_device *device)
{
    return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
}

static inline int rdma_is_port_valid(const struct ib_device *device,
                     unsigned int port)
{
    return (port >= rdma_start_port(device) &&
        port <= rdma_end_port(device));
}

static inline bool rdma_is_grh_required(const struct ib_device *device,
                    u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_PORT_IB_GRH_REQUIRED;
}

static inline bool rdma_protocol_ib(const struct ib_device *device,
                    u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_IB;
}

static inline bool rdma_protocol_roce(const struct ib_device *device,
                      u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
}

static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
                        u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
}

static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
                        u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_ROCE;
}

static inline bool rdma_protocol_iwarp(const struct ib_device *device,
                       u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_IWARP;
}

static inline bool rdma_ib_or_roce(const struct ib_device *device,
                   u32 port_num)
{
    return rdma_protocol_ib(device, port_num) ||
        rdma_protocol_roce(device, port_num);
}

static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
                        u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_RAW_PACKET;
}

static inline bool rdma_protocol_usnic(const struct ib_device *device,
                       u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_PROT_USNIC;
}

/**
 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
 * Management Datagrams.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * Management Datagrams (MAD) are a required part of the InfiniBand
 * specification and are supported on all InfiniBand devices.  A slightly
 * extended version are also supported on OPA interfaces.
 *
 * Return: true if the port supports sending/receiving of MAD packets.
 */
static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_IB_MAD;
}

/**
 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
 * Management Datagrams.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * Intel OmniPath devices extend and/or replace the InfiniBand Management
 * datagrams with their own versions.  These OPA MADs share many but not all of
 * the characteristics of InfiniBand MADs.
 *
 * OPA MADs differ in the following ways:
 *
 *    1) MADs are variable size up to 2K
 *       IBTA defined MADs remain fixed at 256 bytes
 *    2) OPA SMPs must carry valid PKeys
 *    3) OPA SMP packets are a different format
 *
 * Return: true if the port supports OPA MAD packet formats.
 */
static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
        RDMA_CORE_CAP_OPA_MAD;
}

/**
 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
 * @device: Device to check
 * @port_num: Port number to check
 *
 * Each InfiniBand node is required to provide a Subnet Management Agent
 * that the subnet manager can access.  Prior to the fabric being fully
 * configured by the subnet manager, the SMA is accessed via a well known
 * interface called the Subnet Management Interface (SMI).  This interface
 * uses directed route packets to communicate with the SM to get around the
 * chicken and egg problem of the SM needing to know what's on the fabric
 * in order to configure the fabric, and needing to configure the fabric in
 * order to send packets to the devices on the fabric.  These directed
 * route packets do not need the fabric fully configured in order to reach
 * their destination.  The SMI is the only method allowed to send
 * directed route packets on an InfiniBand fabric.
 *
 * Return: true if the port provides an SMI.
 */
static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_IB_SMI;
}

/**
 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
 * Communication Manager.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * The InfiniBand Communication Manager is one of many pre-defined General
 * Service Agents (GSA) that are accessed via the General Service
 * Interface (GSI).  It's role is to facilitate establishment of connections
 * between nodes as well as other management related tasks for established
 * connections.
 *
 * Return: true if the port supports an IB CM (this does not guarantee that
 * a CM is actually running however).
 */
static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_IB_CM;
}

/**
 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
 * Communication Manager.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * Similar to above, but specific to iWARP connections which have a different
 * managment protocol than InfiniBand.
 *
 * Return: true if the port supports an iWARP CM (this does not guarantee that
 * a CM is actually running however).
 */
static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_IW_CM;
}

/**
 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
 * Subnet Administration.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
 * fabrics, devices should resolve routes to other hosts by contacting the
 * SA to query the proper route.
 *
 * Return: true if the port should act as a client to the fabric Subnet
 * Administration interface.  This does not imply that the SA service is
 * running locally.
 */
static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_IB_SA;
}

/**
 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
 * Multicast.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * InfiniBand multicast registration is more complex than normal IPv4 or
 * IPv6 multicast registration.  Each Host Channel Adapter must register
 * with the Subnet Manager when it wishes to join a multicast group.  It
 * should do so only once regardless of how many queue pairs it subscribes
 * to this group.  And it should leave the group only after all queue pairs
 * attached to the group have been detached.
 *
 * Return: true if the port must undertake the additional adminstrative
 * overhead of registering/unregistering with the SM and tracking of the
 * total number of queue pairs attached to the multicast group.
 */
static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
                     u32 port_num)
{
    return rdma_cap_ib_sa(device, port_num);
}

/**
 * rdma_cap_af_ib - Check if the port of device has the capability
 * Native Infiniband Address.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
 * GID.  RoCE uses a different mechanism, but still generates a GID via
 * a prescribed mechanism and port specific data.
 *
 * Return: true if the port uses a GID address to identify devices on the
 * network.
 */
static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_AF_IB;
}

/**
 * rdma_cap_eth_ah - Check if the port of device has the capability
 * Ethernet Address Handle.
 * @device: Device to check
 * @port_num: Port number to check
 *
 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
 * to fabricate GIDs over Ethernet/IP specific addresses native to the
 * port.  Normally, packet headers are generated by the sending host
 * adapter, but when sending connectionless datagrams, we must manually
 * inject the proper headers for the fabric we are communicating over.
 *
 * Return: true if we are running as a RoCE port and must force the
 * addition of a Global Route Header built from our Ethernet Address
 * Handle into our header list for connectionless packets.
 */
static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
{
    return device->port_data[port_num].immutable.core_cap_flags &
           RDMA_CORE_CAP_ETH_AH;
}

/**
 * rdma_cap_opa_ah - Check if the port of device supports
 * OPA Address handles
 * @device: Device to check
 * @port_num: Port number to check
 *
 * Return: true if we are running on an OPA device which supports
 * the extended OPA addressing.
 */
static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
{
    return (device->port_data[port_num].immutable.core_cap_flags &
        RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
}

/**
 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
 *
 * @device: Device
 * @port_num: Port number
 *
 * This MAD size includes the MAD headers and MAD payload.  No other headers
 * are included.
 *
 * Return the max MAD size required by the Port.  Will return 0 if the port
 * does not support MADs
 */
static inline size_t rdma_max_mad_size(const struct ib_device *device,
                       u32 port_num)
{
    return device->port_data[port_num].immutable.max_mad_size;
}

/**
 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
 * @device: Device to check
 * @port_num: Port number to check
 *
 * RoCE GID table mechanism manages the various GIDs for a device.
 *
 * NOTE: if allocating the port's GID table has failed, this call will still
 * return true, but any RoCE GID table API will fail.
 *
 * Return: true if the port uses RoCE GID table mechanism in order to manage
 * its GIDs.
 */
static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
                       u32 port_num)
{
    return rdma_protocol_roce(device, port_num) &&
        device->ops.add_gid && device->ops.del_gid;
}

/*
 * Check if the device supports READ W/ INVALIDATE.
 */
static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
{
    /*
     * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
     * has support for it yet.
     */
    return rdma_protocol_iwarp(dev, port_num);
}

/**
 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
 * @device: Device
 * @port_num: 1 based Port number
 *
 * Return true if port is an Intel OPA port , false if not
 */
static inline bool rdma_core_cap_opa_port(struct ib_device *device,
                      u32 port_num)
{
    return (device->port_data[port_num].immutable.core_cap_flags &
        RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
}

/**
 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
 * @device: Device
 * @port_num: Port number
 * @mtu: enum value of MTU
 *
 * Return the MTU size supported by the port as an integer value. Will return
 * -1 if enum value of mtu is not supported.
 */
static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
                       int mtu)
{
    if (rdma_core_cap_opa_port(device, port))
        return opa_mtu_enum_to_int((enum opa_mtu)mtu);
    else
        return ib_mtu_enum_to_int((enum ib_mtu)mtu);
}

/**
 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
 * @device: Device
 * @port_num: Port number
 * @attr: port attribute
 *
 * Return the MTU size supported by the port as an integer value.
 */
static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
                     struct ib_port_attr *attr)
{
    if (rdma_core_cap_opa_port(device, port))
        return attr->phys_mtu;
    else
        return ib_mtu_enum_to_int(attr->max_mtu);
}

int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
             int state);
int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
             struct ifla_vf_info *info);
int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
            struct ifla_vf_stats *stats);
int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
            struct ifla_vf_guid *node_guid,
            struct ifla_vf_guid *port_guid);
int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
           int type);

int ib_query_pkey(struct ib_device *device,
          u32 port_num, u16 index, u16 *pkey);

int ib_modify_device(struct ib_device *device,
             int device_modify_mask,
             struct ib_device_modify *device_modify);

int ib_modify_port(struct ib_device *device,
           u32 port_num, int port_modify_mask,
           struct ib_port_modify *port_modify);

int ib_find_gid(struct ib_device *device, union ib_gid *gid,
        u32 *port_num, u16 *index);

int ib_find_pkey(struct ib_device *device,
         u32 port_num, u16 pkey, u16 *index);

enum ib_pd_flags {
    /*
     * Create a memory registration for all memory in the system and place
     * the rkey for it into pd->unsafe_global_rkey.  This can be used by
     * ULPs to avoid the overhead of dynamic MRs.
     *
     * This flag is generally considered unsafe and must only be used in
     * extremly trusted environments.  Every use of it will log a warning
     * in the kernel log.
     */
    IB_PD_UNSAFE_GLOBAL_RKEY    = 0x01,
};

struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
        const char *caller);

/**
 * ib_alloc_pd - Allocates an unused protection domain.
 * @device: The device on which to allocate the protection domain.
 * @flags: protection domain flags
 *
 * A protection domain object provides an association between QPs, shared
 * receive queues, address handles, memory regions, and memory windows.
 *
 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 * memory operations.
 */
#define ib_alloc_pd(device, flags) \
    __ib_alloc_pd((device), (flags), KBUILD_MODNAME)

int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);

/**
 * ib_dealloc_pd - Deallocate kernel PD
 * @pd: The protection domain
 *
 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
 */
static inline void ib_dealloc_pd(struct ib_pd *pd)
{
    int ret = ib_dealloc_pd_user(pd, NULL);

    WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
}

enum rdma_create_ah_flags {
    /* In a sleepable context */
    RDMA_CREATE_AH_SLEEPABLE = BIT(0),
};

/**
 * rdma_create_ah - Creates an address handle for the given address vector.
 * @pd: The protection domain associated with the address handle.
 * @ah_attr: The attributes of the address vector.
 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 *
 * The address handle is used to reference a local or global destination
 * in all UD QP post sends.
 */
struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
                 u32 flags);

/**
 * rdma_create_user_ah - Creates an address handle for the given address vector.
 * It resolves destination mac address for ah attribute of RoCE type.
 * @pd: The protection domain associated with the address handle.
 * @ah_attr: The attributes of the address vector.
 * @udata: pointer to user's input output buffer information need by
 *         provider driver.
 *
 * It returns 0 on success and returns appropriate error code on error.
 * The address handle is used to reference a local or global destination
 * in all UD QP post sends.
 */
struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
                  struct rdma_ah_attr *ah_attr,
                  struct ib_udata *udata);
/**
 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
 *   work completion.
 * @hdr: the L3 header to parse
 * @net_type: type of header to parse
 * @sgid: place to store source gid
 * @dgid: place to store destination gid
 */
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
                  enum rdma_network_type net_type,
                  union ib_gid *sgid, union ib_gid *dgid);

/**
 * ib_get_rdma_header_version - Get the header version
 * @hdr: the L3 header to parse
 */
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);

/**
 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
 *   work completion.
 * @device: Device on which the received message arrived.
 * @port_num: Port on which the received message arrived.
 * @wc: Work completion associated with the received message.
 * @grh: References the received global route header.  This parameter is
 *   ignored unless the work completion indicates that the GRH is valid.
 * @ah_attr: Returned attributes that can be used when creating an address
 *   handle for replying to the message.
 * When ib_init_ah_attr_from_wc() returns success,
 * (a) for IB link layer it optionally contains a reference to SGID attribute
 * when GRH is present for IB link layer.
 * (b) for RoCE link layer it contains a reference to SGID attribute.
 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
 * attributes which are initialized using ib_init_ah_attr_from_wc().
 *
 */
int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
                const struct ib_wc *wc, const struct ib_grh *grh,
                struct rdma_ah_attr *ah_attr);

/**
 * ib_create_ah_from_wc - Creates an address handle associated with the
 *   sender of the specified work completion.
 * @pd: The protection domain associated with the address handle.
 * @wc: Work completion information associated with a received message.
 * @grh: References the received global route header.  This parameter is
 *   ignored unless the work completion indicates that the GRH is valid.
 * @port_num: The outbound port number to associate with the address.
 *
 * The address handle is used to reference a local or global destination
 * in all UD QP post sends.
 */
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
                   const struct ib_grh *grh, u32 port_num);

/**
 * rdma_modify_ah - Modifies the address vector associated with an address
 *   handle.
 * @ah: The address handle to modify.
 * @ah_attr: The new address vector attributes to associate with the
 *   address handle.
 */
int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);

/**
 * rdma_query_ah - Queries the address vector associated with an address
 *   handle.
 * @ah: The address handle to query.
 * @ah_attr: The address vector attributes associated with the address
 *   handle.
 */
int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);

enum rdma_destroy_ah_flags {
    /* In a sleepable context */
    RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
};

/**
 * rdma_destroy_ah_user - Destroys an address handle.
 * @ah: The address handle to destroy.
 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
 * @udata: Valid user data or NULL for kernel objects
 */
int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);

/**
 * rdma_destroy_ah - Destroys an kernel address handle.
 * @ah: The address handle to destroy.
 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
 *
 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
 */
static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
{
    int ret = rdma_destroy_ah_user(ah, flags, NULL);

    WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
}

struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
                  struct ib_srq_init_attr *srq_init_attr,
                  struct ib_usrq_object *uobject,
                  struct ib_udata *udata);
static inline struct ib_srq *
ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
{
    if (!pd->device->ops.create_srq)
        return ERR_PTR(-EOPNOTSUPP);

    return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
}

/**
 * ib_modify_srq - Modifies the attributes for the specified SRQ.
 * @srq: The SRQ to modify.
 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
 *   the current values of selected SRQ attributes are returned.
 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
 *   are being modified.
 *
 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
 * the number of receives queued drops below the limit.
 */
int ib_modify_srq(struct ib_srq *srq,
          struct ib_srq_attr *srq_attr,
          enum ib_srq_attr_mask srq_attr_mask);

/**
 * ib_query_srq - Returns the attribute list and current values for the
 *   specified SRQ.
 * @srq: The SRQ to query.
 * @srq_attr: The attributes of the specified SRQ.
 */
int ib_query_srq(struct ib_srq *srq,
         struct ib_srq_attr *srq_attr);

/**
 * ib_destroy_srq_user - Destroys the specified SRQ.
 * @srq: The SRQ to destroy.
 * @udata: Valid user data or NULL for kernel objects
 */
int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);

/**
 * ib_destroy_srq - Destroys the specified kernel SRQ.
 * @srq: The SRQ to destroy.
 *
 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
 */
static inline void ib_destroy_srq(struct ib_srq *srq)
{
    int ret = ib_destroy_srq_user(srq, NULL);

    WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
}

/**
 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
 * @srq: The SRQ to post the work request on.
 * @recv_wr: A list of work requests to post on the receive queue.
 * @bad_recv_wr: On an immediate failure, this parameter will reference
 *   the work request that failed to be posted on the QP.
 */
static inline int ib_post_srq_recv(struct ib_srq *srq,
                   const struct ib_recv_wr *recv_wr,
                   const struct ib_recv_wr **bad_recv_wr)
{
    const struct ib_recv_wr *dummy;

    return srq->device->ops.post_srq_recv(srq, recv_wr,
                          bad_recv_wr ? : &dummy);
}

struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
                  struct ib_qp_init_attr *qp_init_attr,
                  const char *caller);
/**
 * ib_create_qp - Creates a kernel QP associated with the specific protection
 * domain.
 * @pd: The protection domain associated with the QP.
 * @init_attr: A list of initial attributes required to create the
 *   QP.  If QP creation succeeds, then the attributes are updated to
 *   the actual capabilities of the created QP.
 */
static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
                     struct ib_qp_init_attr *init_attr)
{
    return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
}

/**
 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
 * @qp: The QP to modify.
 * @attr: On input, specifies the QP attributes to modify.  On output,
 *   the current values of selected QP attributes are returned.
 * @attr_mask: A bit-mask used to specify which attributes of the QP
 *   are being modified.
 * @udata: pointer to user's input output buffer information
 *   are being modified.
 * It returns 0 on success and returns appropriate error code on error.
 */
int ib_modify_qp_with_udata(struct ib_qp *qp,
                struct ib_qp_attr *attr,
                int attr_mask,
                struct ib_udata *udata);

/**
 * ib_modify_qp - Modifies the attributes for the specified QP and then
 *   transitions the QP to the given state.
 * @qp: The QP to modify.
 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
 *   the current values of selected QP attributes are returned.
 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
 *   are being modified.
 */
int ib_modify_qp(struct ib_qp *qp,
         struct ib_qp_attr *qp_attr,
         int qp_attr_mask);

/**
 * ib_query_qp - Returns the attribute list and current values for the
 *   specified QP.
 * @qp: The QP to query.
 * @qp_attr: The attributes of the specified QP.
 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
 * @qp_init_attr: Additional attributes of the selected QP.
 *
 * The qp_attr_mask may be used to limit the query to gathering only the
 * selected attributes.
 */
int ib_query_qp(struct ib_qp *qp,
        struct ib_qp_attr *qp_attr,
        int qp_attr_mask,
        struct ib_qp_init_attr *qp_init_attr);

/**
 * ib_destroy_qp - Destroys the specified QP.
 * @qp: The QP to destroy.
 * @udata: Valid udata or NULL for kernel objects
 */
int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);

/**
 * ib_destroy_qp - Destroys the specified kernel QP.
 * @qp: The QP to destroy.
 *
 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
 */
static inline int ib_destroy_qp(struct ib_qp *qp)
{
    return ib_destroy_qp_user(qp, NULL);
}

/**
 * ib_open_qp - Obtain a reference to an existing sharable QP.
 * @xrcd - XRC domain
 * @qp_open_attr: Attributes identifying the QP to open.
 *
 * Returns a reference to a sharable QP.
 */
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
             struct ib_qp_open_attr *qp_open_attr);

/**
 * ib_close_qp - Release an external reference to a QP.
 * @qp: The QP handle to release
 *
 * The opened QP handle is released by the caller.  The underlying
 * shared QP is not destroyed until all internal references are released.
 */
int ib_close_qp(struct ib_qp *qp);

/**
 * ib_post_send - Posts a list of work requests to the send queue of
 *   the specified QP.
 * @qp: The QP to post the work request on.
 * @send_wr: A list of work requests to post on the send queue.
 * @bad_send_wr: On an immediate failure, this parameter will reference
 *   the work request that failed to be posted on the QP.
 *
 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
 * error is returned, the QP state shall not be affected,
 * ib_post_send() will return an immediate error after queueing any
 * earlier work requests in the list.
 */
static inline int ib_post_send(struct ib_qp *qp,
                   const struct ib_send_wr *send_wr,
                   const struct ib_send_wr **bad_send_wr)
{
    const struct ib_send_wr *dummy;

    return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
}

/**
 * ib_post_recv - Posts a list of work requests to the receive queue of
 *   the specified QP.
 * @qp: The QP to post the work request on.
 * @recv_wr: A list of work requests to post on the receive queue.
 * @bad_recv_wr: On an immediate failure, this parameter will reference
 *   the work request that failed to be posted on the QP.
 */
static inline int ib_post_recv(struct ib_qp *qp,
                   const struct ib_recv_wr *recv_wr,
                   const struct ib_recv_wr **bad_recv_wr)
{
    const struct ib_recv_wr *dummy;

    return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
}

struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
                int comp_vector, enum ib_poll_context poll_ctx,
                const char *caller);
static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
                    int nr_cqe, int comp_vector,
                    enum ib_poll_context poll_ctx)
{
    return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
                 KBUILD_MODNAME);
}

struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
                int nr_cqe, enum ib_poll_context poll_ctx,
                const char *caller);

/**
 * ib_alloc_cq_any: Allocate kernel CQ
 * @dev: The IB device
 * @private: Private data attached to the CQE
 * @nr_cqe: Number of CQEs in the CQ
 * @poll_ctx: Context used for polling the CQ
 */
static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
                        void *private, int nr_cqe,
                        enum ib_poll_context poll_ctx)
{
    return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
                 KBUILD_MODNAME);
}

void ib_free_cq(struct ib_cq *cq);
int ib_process_cq_direct(struct ib_cq *cq, int budget);

/**
 * ib_create_cq - Creates a CQ on the specified device.
 * @device: The device on which to create the CQ.
 * @comp_handler: A user-specified callback that is invoked when a
 *   completion event occurs on the CQ.
 * @event_handler: A user-specified callback that is invoked when an
 *   asynchronous event not associated with a completion occurs on the CQ.
 * @cq_context: Context associated with the CQ returned to the user via
 *   the associated completion and event handlers.
 * @cq_attr: The attributes the CQ should be created upon.
 *
 * Users can examine the cq structure to determine the actual CQ size.
 */
struct ib_cq *__ib_create_cq(struct ib_device *device,
                 ib_comp_handler comp_handler,
                 void (*event_handler)(struct ib_event *, void *),
                 void *cq_context,
                 const struct ib_cq_init_attr *cq_attr,
                 const char *caller);
#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
    __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)

/**
 * ib_resize_cq - Modifies the capacity of the CQ.
 * @cq: The CQ to resize.
 * @cqe: The minimum size of the CQ.
 *
 * Users can examine the cq structure to determine the actual CQ size.
 */
int ib_resize_cq(struct ib_cq *cq, int cqe);

/**
 * rdma_set_cq_moderation - Modifies moderation params of the CQ
 * @cq: The CQ to modify.
 * @cq_count: number of CQEs that will trigger an event
 * @cq_period: max period of time in usec before triggering an event
 *
 */
int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);

/**
 * ib_destroy_cq_user - Destroys the specified CQ.
 * @cq: The CQ to destroy.
 * @udata: Valid user data or NULL for kernel objects
 */
int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);

/**
 * ib_destroy_cq - Destroys the specified kernel CQ.
 * @cq: The CQ to destroy.
 *
 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
 */
static inline void ib_destroy_cq(struct ib_cq *cq)
{
    int ret = ib_destroy_cq_user(cq, NULL);

    WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
}

/**
 * ib_poll_cq - poll a CQ for completion(s)
 * @cq:the CQ being polled
 * @num_entries:maximum number of completions to return
 * @wc:array of at least @num_entries &struct ib_wc where completions
 *   will be returned
 *
 * Poll a CQ for (possibly multiple) completions.  If the return value
 * is < 0, an error occurred.  If the return value is >= 0, it is the
 * number of completions returned.  If the return value is
 * non-negative and < num_entries, then the CQ was emptied.
 */
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
                 struct ib_wc *wc)
{
    return cq->device->ops.poll_cq(cq, num_entries, wc);
}

/**
 * ib_req_notify_cq - Request completion notification on a CQ.
 * @cq: The CQ to generate an event for.
 * @flags:
 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
 *   to request an event on the next solicited event or next work
 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
 *   may also be |ed in to request a hint about missed events, as
 *   described below.
 *
 * Return Value:
 *    < 0 means an error occurred while requesting notification
 *   == 0 means notification was requested successfully, and if
 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
 *        were missed and it is safe to wait for another event.  In
 *        this case is it guaranteed that any work completions added
 *        to the CQ since the last CQ poll will trigger a completion
 *        notification event.
 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
 *        in.  It means that the consumer must poll the CQ again to
 *        make sure it is empty to avoid missing an event because of a
 *        race between requesting notification and an entry being
 *        added to the CQ.  This return value means it is possible
 *        (but not guaranteed) that a work completion has been added
 *        to the CQ since the last poll without triggering a
 *        completion notification event.
 */
static inline int ib_req_notify_cq(struct ib_cq *cq,
                   enum ib_cq_notify_flags flags)
{
    return cq->device->ops.req_notify_cq(cq, flags);
}

struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
                 int comp_vector_hint,
                 enum ib_poll_context poll_ctx);

void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);

/*
 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
 * address into the dma address.
 */
static inline bool ib_uses_virt_dma(struct ib_device *dev)
{
    return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
}

/*
 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
 */
static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
{
    if (ib_uses_virt_dma(dev))
        return false;

    return dma_pci_p2pdma_supported(dev->dma_device);
}

/**
 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
 * @dma_addr: The DMA address
 *
 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
 * going through the dma_addr marshalling.
 */
static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
{
    /* virt_dma mode maps the kvs's directly into the dma addr */
    return (void *)(uintptr_t)dma_addr;
}

/**
 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
 * @dma_addr: The DMA address
 *
 * Used by ib_uses_virt_dma() device to get back to the struct page after going
 * through the dma_addr marshalling.
 */
static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
{
    return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
}

/**
 * ib_dma_mapping_error - check a DMA addr for error
 * @dev: The device for which the dma_addr was created
 * @dma_addr: The DMA address to check
 */
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
{
    if (ib_uses_virt_dma(dev))
        return 0;
    return dma_mapping_error(dev->dma_device, dma_addr);
}

/**
 * ib_dma_map_single - Map a kernel virtual address to DMA address
 * @dev: The device for which the dma_addr is to be created
 * @cpu_addr: The kernel virtual address
 * @size: The size of the region in bytes
 * @direction: The direction of the DMA
 */
static inline u64 ib_dma_map_single(struct ib_device *dev,
                    void *cpu_addr, size_t size,
                    enum dma_data_direction direction)
{
    if (ib_uses_virt_dma(dev))
        return (uintptr_t)cpu_addr;
    return dma_map_single(dev->dma_device, cpu_addr, size, direction);
}

/**
 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
 * @dev: The device for which the DMA address was created
 * @addr: The DMA address
 * @size: The size of the region in bytes
 * @direction: The direction of the DMA
 */
static inline void ib_dma_unmap_single(struct ib_device *dev,
                       u64 addr, size_t size,
                       enum dma_data_direction direction)
{
    if (!ib_uses_virt_dma(dev))
        dma_unmap_single(dev->dma_device, addr, size, direction);
}

/**
 * ib_dma_map_page - Map a physical page to DMA address
 * @dev: The device for which the dma_addr is to be created
 * @page: The page to be mapped
 * @offset: The offset within the page
 * @size: The size of the region in bytes
 * @direction: The direction of the DMA
 */
static inline u64 ib_dma_map_page(struct ib_device *dev,
                  struct page *page,
                  unsigned long offset,
                  size_t size,
                     enum dma_data_direction direction)
{
    if (ib_uses_virt_dma(dev))
        return (uintptr_t)(page_address(page) + offset);
    return dma_map_page(dev->dma_device, page, offset, size, direction);
}

/**
 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
 * @dev: The device for which the DMA address was created
 * @addr: The DMA address
 * @size: The size of the region in bytes
 * @direction: The direction of the DMA
 */
static inline void ib_dma_unmap_page(struct ib_device *dev,
                     u64 addr, size_t size,
                     enum dma_data_direction direction)
{
    if (!ib_uses_virt_dma(dev))
        dma_unmap_page(dev->dma_device, addr, size, direction);
}

int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
                      struct scatterlist *sg, int nents,
                      enum dma_data_direction direction,
                      unsigned long dma_attrs)
{
    if (ib_uses_virt_dma(dev))
        return ib_dma_virt_map_sg(dev, sg, nents);
    return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
                dma_attrs);
}

static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
                     struct scatterlist *sg, int nents,
                     enum dma_data_direction direction,
                     unsigned long dma_attrs)
{
    if (!ib_uses_virt_dma(dev))
        dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
                   dma_attrs);
}

/**
 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
 * @dev: The device for which the DMA addresses are to be created
 * @sg: The sg_table object describing the buffer
 * @direction: The direction of the DMA
 * @attrs: Optional DMA attributes for the map operation
 */
static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
                       struct sg_table *sgt,
                       enum dma_data_direction direction,
                       unsigned long dma_attrs)
{
    int nents;

    if (ib_uses_virt_dma(dev)) {
        nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
        if (!nents)
            return -EIO;
        sgt->nents = nents;
        return 0;
    }
    return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
}

static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
                          struct sg_table *sgt,
                          enum dma_data_direction direction,
                          unsigned long dma_attrs)
{
    if (!ib_uses_virt_dma(dev))
        dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
}

/**
 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
 * @dev: The device for which the DMA addresses are to be created
 * @sg: The array of scatter/gather entries
 * @nents: The number of scatter/gather entries
 * @direction: The direction of the DMA
 */
static inline int ib_dma_map_sg(struct ib_device *dev,
                struct scatterlist *sg, int nents,
                enum dma_data_direction direction)
{
    return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
}

/**
 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
 * @dev: The device for which the DMA addresses were created
 * @sg: The array of scatter/gather entries
 * @nents: The number of scatter/gather entries
 * @direction: The direction of the DMA
 */
static inline void ib_dma_unmap_sg(struct ib_device *dev,
                   struct scatterlist *sg, int nents,
                   enum dma_data_direction direction)
{
    ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
}

/**
 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
 * @dev: The device to query
 *
 * The returned value represents a size in bytes.
 */
static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
{
    if (ib_uses_virt_dma(dev))
        return UINT_MAX;
    return dma_get_max_seg_size(dev->dma_device);
}

/**
 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
 * @dev: The device for which the DMA address was created
 * @addr: The DMA address
 * @size: The size of the region in bytes
 * @dir: The direction of the DMA
 */
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
                          u64 addr,
                          size_t size,
                          enum dma_data_direction dir)
{
    if (!ib_uses_virt_dma(dev))
        dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
}

/**
 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
 * @dev: The device for which the DMA address was created
 * @addr: The DMA address
 * @size: The size of the region in bytes
 * @dir: The direction of the DMA
 */
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
                         u64 addr,
                         size_t size,
                         enum dma_data_direction dir)
{
    if (!ib_uses_virt_dma(dev))
        dma_sync_single_for_device(dev->dma_device, addr, size, dir);
}

/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
 * space. This function should be called when 'current' is the owning MM.
 */
struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
                 u64 virt_addr, int mr_access_flags);

/* ib_advise_mr -  give an advice about an address range in a memory region */
int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
         u32 flags, struct ib_sge *sg_list, u32 num_sge);
/**
 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
 *   HCA translation table.
 * @mr: The memory region to deregister.
 * @udata: Valid user data or NULL for kernel object
 *
 * This function can fail, if the memory region has memory windows bound to it.
 */
int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);

/**
 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
 *   HCA translation table.
 * @mr: The memory region to deregister.
 *
 * This function can fail, if the memory region has memory windows bound to it.
 *
 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
 */
static inline int ib_dereg_mr(struct ib_mr *mr)
{
    return ib_dereg_mr_user(mr, NULL);
}

struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
              u32 max_num_sg);

struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
                    u32 max_num_data_sg,
                    u32 max_num_meta_sg);

/**
 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
 *   R_Key and L_Key.
 * @mr - struct ib_mr pointer to be updated.
 * @newkey - new key to be used.
 */
static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
{
    mr->lkey = (mr->lkey & 0xffffff00) | newkey;
    mr->rkey = (mr->rkey & 0xffffff00) | newkey;
}

/**
 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
 * for calculating a new rkey for type 2 memory windows.
 * @rkey - the rkey to increment.
 */
static inline u32 ib_inc_rkey(u32 rkey)
{
    const u32 mask = 0x000000ff;
    return ((rkey + 1) & mask) | (rkey & ~mask);
}

/**
 * ib_attach_mcast - Attaches the specified QP to a multicast group.
 * @qp: QP to attach to the multicast group.  The QP must be type
 *   IB_QPT_UD.
 * @gid: Multicast group GID.
 * @lid: Multicast group LID in host byte order.
 *
 * In order to send and receive multicast packets, subnet
 * administration must have created the multicast group and configured
 * the fabric appropriately.  The port associated with the specified
 * QP must also be a member of the multicast group.
 */
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);

/**
 * ib_detach_mcast - Detaches the specified QP from a multicast group.
 * @qp: QP to detach from the multicast group.
 * @gid: Multicast group GID.
 * @lid: Multicast group LID in host byte order.
 */
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);

struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
                   struct inode *inode, struct ib_udata *udata);
int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);

static inline int ib_check_mr_access(struct ib_device *ib_dev,
                     unsigned int flags)
{
    u64 device_cap = ib_dev->attrs.device_cap_flags;

    /*
     * Local write permission is required if remote write or
     * remote atomic permission is also requested.
     */
    if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
        !(flags & IB_ACCESS_LOCAL_WRITE))
        return -EINVAL;

    if (flags & ~IB_ACCESS_SUPPORTED)
        return -EINVAL;

    if (flags & IB_ACCESS_ON_DEMAND &&
        !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
        return -EOPNOTSUPP;

    if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
        !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
        (flags & IB_ACCESS_FLUSH_PERSISTENT &&
        !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
        return -EOPNOTSUPP;

    return 0;
}

static inline bool ib_access_writable(int access_flags)
{
    /*
     * We have writable memory backing the MR if any of the following
     * access flags are set.  "Local write" and "remote write" obviously
     * require write access.  "Remote atomic" can do things like fetch and
     * add, which will modify memory, and "MW bind" can change permissions
     * by binding a window.
     */
    return access_flags &
        (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
         IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
}

/**
 * ib_check_mr_status: lightweight check of MR status.
 *     This routine may provide status checks on a selected
 *     ib_mr. first use is for signature status check.
 *
 * @mr: A memory region.
 * @check_mask: Bitmask of which checks to perform from
 *     ib_mr_status_check enumeration.
 * @mr_status: The container of relevant status checks.
 *     failed checks will be indicated in the status bitmask
 *     and the relevant info shall be in the error item.
 */
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
               struct ib_mr_status *mr_status);

/**
 * ib_device_try_get: Hold a registration lock
 * device: The device to lock
 *
 * A device under an active registration lock cannot become unregistered. It
 * is only possible to obtain a registration lock on a device that is fully
 * registered, otherwise this function returns false.
 *
 * The registration lock is only necessary for actions which require the
 * device to still be registered. Uses that only require the device pointer to
 * be valid should use get_device(&ibdev->dev) to hold the memory.
 *
 */
static inline bool ib_device_try_get(struct ib_device *dev)
{
    return refcount_inc_not_zero(&dev->refcount);
}

void ib_device_put(struct ib_device *device);
struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
                      enum rdma_driver_id driver_id);
struct ib_device *ib_device_get_by_name(const char *name,
                    enum rdma_driver_id driver_id);
struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
                        u16 pkey, const union ib_gid *gid,
                        const struct sockaddr *addr);
int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
             unsigned int port);
struct ib_wq *ib_create_wq(struct ib_pd *pd,
               struct ib_wq_init_attr *init_attr);
int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);

int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
         unsigned int *sg_offset, unsigned int page_size);
int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
            int data_sg_nents, unsigned int *data_sg_offset,
            struct scatterlist *meta_sg, int meta_sg_nents,
            unsigned int *meta_sg_offset, unsigned int page_size);

static inline int
ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
          unsigned int *sg_offset, unsigned int page_size)
{
    int n;

    n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
    mr->iova = 0;

    return n;
}

int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
        unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));

void ib_drain_rq(struct ib_qp *qp);
void ib_drain_sq(struct ib_qp *qp);
void ib_drain_qp(struct ib_qp *qp);

int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
             u8 *width);

static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
        return attr->roce.dmac;
    return NULL;
}

static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_IB)
        attr->ib.dlid = (u16)dlid;
    else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        attr->opa.dlid = dlid;
}

static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_IB)
        return attr->ib.dlid;
    else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        return attr->opa.dlid;
    return 0;
}

static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
{
    attr->sl = sl;
}

static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
{
    return attr->sl;
}

static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
                     u8 src_path_bits)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_IB)
        attr->ib.src_path_bits = src_path_bits;
    else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        attr->opa.src_path_bits = src_path_bits;
}

static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_IB)
        return attr->ib.src_path_bits;
    else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        return attr->opa.src_path_bits;
    return 0;
}

static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
                    bool make_grd)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        attr->opa.make_grd = make_grd;
}

static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
{
    if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
        return attr->opa.make_grd;
    return false;
}

static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
{
    attr->port_num = port_num;
}

static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
{
    return attr->port_num;
}

static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
                       u8 static_rate)
{
    attr->static_rate = static_rate;
}

static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
{
    return attr->static_rate;
}

static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
                    enum ib_ah_flags flag)
{
    attr->ah_flags = flag;
}

static inline enum ib_ah_flags
        rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
{
    return attr->ah_flags;
}

static inline const struct ib_global_route
        *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
{
    return &attr->grh;
}

/*To retrieve and modify the grh */
static inline struct ib_global_route
        *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
{
    return &attr->grh;
}

static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
{
    struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);

    memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
}

static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
                         __be64 prefix)
{
    struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);

    grh->dgid.global.subnet_prefix = prefix;
}

static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
                        __be64 if_id)
{
    struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);

    grh->dgid.global.interface_id = if_id;
}

static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
                   union ib_gid *dgid, u32 flow_label,
                   u8 sgid_index, u8 hop_limit,
                   u8 traffic_class)
{
    struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);

    attr->ah_flags = IB_AH_GRH;
    if (dgid)
        grh->dgid = *dgid;
    grh->flow_label = flow_label;
    grh->sgid_index = sgid_index;
    grh->hop_limit = hop_limit;
    grh->traffic_class = traffic_class;
    grh->sgid_attr = NULL;
}

void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
                 u32 flow_label, u8 hop_limit, u8 traffic_class,
                 const struct ib_gid_attr *sgid_attr);
void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
               const struct rdma_ah_attr *src);
void rdma_replace_ah_attr(struct rdma_ah_attr *old,
              const struct rdma_ah_attr *new);
void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);

/**
 * rdma_ah_find_type - Return address handle type.
 *
 * @dev: Device to be checked
 * @port_num: Port number
 */
static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
                               u32 port_num)
{
    if (rdma_protocol_roce(dev, port_num))
        return RDMA_AH_ATTR_TYPE_ROCE;
    if (rdma_protocol_ib(dev, port_num)) {
        if (rdma_cap_opa_ah(dev, port_num))
            return RDMA_AH_ATTR_TYPE_OPA;
        return RDMA_AH_ATTR_TYPE_IB;
    }

    return RDMA_AH_ATTR_TYPE_UNDEFINED;
}

/**
 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
 *     In the current implementation the only way to
 *     get the 32bit lid is from other sources for OPA.
 *     For IB, lids will always be 16bits so cast the
 *     value accordingly.
 *
 * @lid: A 32bit LID
 */
static inline u16 ib_lid_cpu16(u32 lid)
{
    WARN_ON_ONCE(lid & 0xFFFF0000);
    return (u16)lid;
}

/**
 * ib_lid_be16 - Return lid in 16bit BE encoding.
 *
 * @lid: A 32bit LID
 */
static inline __be16 ib_lid_be16(u32 lid)
{
    WARN_ON_ONCE(lid & 0xFFFF0000);
    return cpu_to_be16((u16)lid);
}

/**
 * ib_get_vector_affinity - Get the affinity mappings of a given completion
 *   vector
 * @device:         the rdma device
 * @comp_vector:    index of completion vector
 *
 * Returns NULL on failure, otherwise a corresponding cpu map of the
 * completion vector (returns all-cpus map if the device driver doesn't
 * implement get_vector_affinity).
 */
static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device *device, int comp_vector)
{
    if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
        !device->ops.get_vector_affinity)
        return NULL;

    return device->ops.get_vector_affinity(device, comp_vector);

}

/**
 * rdma_roce_rescan_device - Rescan all of the network devices in the system
 * and add their gids, as needed, to the relevant RoCE devices.
 *
 * @device:         the rdma device
 */
void rdma_roce_rescan_device(struct ib_device *ibdev);

struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);

int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);

struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
                     enum rdma_netdev_t type, const char *name,
                     unsigned char name_assign_type,
                     void (*setup)(struct net_device *));

int rdma_init_netdev(struct ib_device *device, u32 port_num,
             enum rdma_netdev_t type, const char *name,
             unsigned char name_assign_type,
             void (*setup)(struct net_device *),
             struct net_device *netdev);

/**
 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
 *
 * @device:    device pointer for which ib_device pointer to retrieve
 *
 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
 *
 */
static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
{
    struct ib_core_device *coredev =
        container_of(device, struct ib_core_device, dev);

    return coredev->owner;
}

/**
 * ibdev_to_node - return the NUMA node for a given ib_device
 * @dev:    device to get the NUMA node for.
 */
static inline int ibdev_to_node(struct ib_device *ibdev)
{
    struct device *parent = ibdev->dev.parent;

    if (!parent)
        return NUMA_NO_NODE;
    return dev_to_node(parent);
}

/**
 * rdma_device_to_drv_device - Helper macro to reach back to driver's
 *                   ib_device holder structure from device pointer.
 *
 * NOTE: New drivers should not make use of this API; This API is only for
 * existing drivers who have exposed sysfs entries using
 * ops->device_group.
 */
#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
    container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)

bool rdma_dev_access_netns(const struct ib_device *device,
               const struct net *net);

#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)

/**
 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
 *                               on the flow_label
 *
 * This function will convert the 20 bit flow_label input to a valid RoCE v2
 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
 * convention.
 */
static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
{
    u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;

    fl_low ^= fl_high >> 14;
    return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
}

/**
 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
 *                        local and remote qpn values
 *
 * This function folded the multiplication results of two qpns, 24 bit each,
 * fields, and converts it to a 20 bit results.
 *
 * This function will create symmetric flow_label value based on the local
 * and remote qpn values. this will allow both the requester and responder
 * to calculate the same flow_label for a given connection.
 *
 * This helper function should be used by driver in case the upper layer
 * provide a zero flow_label value. This is to improve entropy of RDMA
 * traffic in the network.
 */
static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
{
    u64 v = (u64)lqpn * rqpn;

    v ^= v >> 20;
    v ^= v >> 40;

    return (u32)(v & IB_GRH_FLOWLABEL_MASK);
}

/**
 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
 *                      label. If flow label is not defined in GRH then
 *                      calculate it based on lqpn/rqpn.
 *
 * @fl:                 flow label from GRH
 * @lqpn:               local qp number
 * @rqpn:               remote qp number
 */
static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
{
    if (!fl)
        fl = rdma_calc_flow_label(lqpn, rqpn);

    return rdma_flow_label_to_udp_sport(fl);
}

const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device *dev, unsigned int port);
#endif /* IB_VERBS_H */

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.0 [PHP 7 Update] [25.02.2019] maintained by HackingTool | HackingTool | Generation time: 0.0074 ]--