Viewing file: kvm_host.h (25.01 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <[email protected]> * * Derived from arch/arm/include/asm/kvm_host.h: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <[email protected]> */
#ifndef __ARM64_KVM_HOST_H__ #define __ARM64_KVM_HOST_H__
#include <linux/arm-smccc.h> #include <linux/bitmap.h> #include <linux/types.h> #include <linux/jump_label.h> #include <linux/kvm_types.h> #include <linux/percpu.h> #include <linux/psci.h> #include <asm/arch_gicv3.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/cputype.h> #include <asm/daifflags.h> #include <asm/fpsimd.h> #include <asm/kvm.h> #include <asm/kvm_asm.h> #include <asm/thread_info.h>
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
#define KVM_HALT_POLL_NS_DEFAULT 500000
#include <kvm/arm_vgic.h> #include <kvm/arm_arch_timer.h> #include <kvm/arm_pmu.h>
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 7
#define KVM_REQ_SLEEP \ KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ KVM_DIRTY_LOG_INITIALLY_SET)
/* * Mode of operation configurable with kvm-arm.mode early param. * See Documentation/admin-guide/kernel-parameters.txt for more information. */ enum kvm_mode { KVM_MODE_DEFAULT, KVM_MODE_PROTECTED, }; enum kvm_mode kvm_get_mode(void);
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
extern unsigned int kvm_sve_max_vl; int kvm_arm_init_sve(void);
u32 __attribute_const__ kvm_target_cpu(void); int kvm_reset_vcpu(struct kvm_vcpu *vcpu); void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
struct kvm_vmid { /* The VMID generation used for the virt. memory system */ u64 vmid_gen; u32 vmid; };
struct kvm_s2_mmu { struct kvm_vmid vmid;
/* * stage2 entry level table * * Two kvm_s2_mmu structures in the same VM can point to the same * pgd here. This happens when running a guest using a * translation regime that isn't affected by its own stage-2 * translation, such as a non-VHE hypervisor running at vEL2, or * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the * canonical stage-2 page tables. */ phys_addr_t pgd_phys; struct kvm_pgtable *pgt;
/* The last vcpu id that ran on each physical CPU */ int __percpu *last_vcpu_ran;
struct kvm_arch *arch; };
struct kvm_arch_memory_slot { };
struct kvm_arch { struct kvm_s2_mmu mmu;
/* VTCR_EL2 value for this VM */ u64 vtcr;
/* The maximum number of vCPUs depends on the used GIC model */ int max_vcpus;
/* Interrupt controller */ struct vgic_dist vgic;
/* Mandated version of PSCI */ u32 psci_version;
/* * If we encounter a data abort without valid instruction syndrome * information, report this to user space. User space can (and * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is * supported. */ bool return_nisv_io_abort_to_user;
/* * VM-wide PMU filter, implemented as a bitmap and big enough for * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). */ unsigned long *pmu_filter; unsigned int pmuver;
u8 pfr0_csv2; u8 pfr0_csv3;
/* Memory Tagging Extension enabled for the guest */ bool mte_enabled; };
struct kvm_vcpu_fault_info { u32 esr_el2; /* Hyp Syndrom Register */ u64 far_el2; /* Hyp Fault Address Register */ u64 hpfar_el2; /* Hyp IPA Fault Address Register */ u64 disr_el1; /* Deferred [SError] Status Register */ };
enum vcpu_sysreg { __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ MPIDR_EL1, /* MultiProcessor Affinity Register */ CSSELR_EL1, /* Cache Size Selection Register */ SCTLR_EL1, /* System Control Register */ ACTLR_EL1, /* Auxiliary Control Register */ CPACR_EL1, /* Coprocessor Access Control */ ZCR_EL1, /* SVE Control */ TTBR0_EL1, /* Translation Table Base Register 0 */ TTBR1_EL1, /* Translation Table Base Register 1 */ TCR_EL1, /* Translation Control Register */ ESR_EL1, /* Exception Syndrome Register */ AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ FAR_EL1, /* Fault Address Register */ MAIR_EL1, /* Memory Attribute Indirection Register */ VBAR_EL1, /* Vector Base Address Register */ CONTEXTIDR_EL1, /* Context ID Register */ TPIDR_EL0, /* Thread ID, User R/W */ TPIDRRO_EL0, /* Thread ID, User R/O */ TPIDR_EL1, /* Thread ID, Privileged */ AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ CNTKCTL_EL1, /* Timer Control Register (EL1) */ PAR_EL1, /* Physical Address Register */ MDSCR_EL1, /* Monitor Debug System Control Register */ MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ DISR_EL1, /* Deferred Interrupt Status Register */
/* Performance Monitors Registers */ PMCR_EL0, /* Control Register */ PMSELR_EL0, /* Event Counter Selection Register */ PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, PMCCNTR_EL0, /* Cycle Counter Register */ PMEVTYPER0_EL0, /* Event Type Register (0-30) */ PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, PMCCFILTR_EL0, /* Cycle Count Filter Register */ PMCNTENSET_EL0, /* Count Enable Set Register */ PMINTENSET_EL1, /* Interrupt Enable Set Register */ PMOVSSET_EL0, /* Overflow Flag Status Set Register */ PMUSERENR_EL0, /* User Enable Register */
/* Pointer Authentication Registers in a strict increasing order. */ APIAKEYLO_EL1, APIAKEYHI_EL1, APIBKEYLO_EL1, APIBKEYHI_EL1, APDAKEYLO_EL1, APDAKEYHI_EL1, APDBKEYLO_EL1, APDBKEYHI_EL1, APGAKEYLO_EL1, APGAKEYHI_EL1,
ELR_EL1, SP_EL1, SPSR_EL1,
CNTVOFF_EL2, CNTV_CVAL_EL0, CNTV_CTL_EL0, CNTP_CVAL_EL0, CNTP_CTL_EL0,
/* Memory Tagging Extension registers */ RGSR_EL1, /* Random Allocation Tag Seed Register */ GCR_EL1, /* Tag Control Register */ TFSR_EL1, /* Tag Fault Status Register (EL1) */ TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
/* 32bit specific registers. Keep them at the end of the range */ DACR32_EL2, /* Domain Access Control Register */ IFSR32_EL2, /* Instruction Fault Status Register */ FPEXC32_EL2, /* Floating-Point Exception Control Register */ DBGVCR32_EL2, /* Debug Vector Catch Register */
NR_SYS_REGS /* Nothing after this line! */ };
struct kvm_cpu_context { struct user_pt_regs regs; /* sp = sp_el0 */
u64 spsr_abt; u64 spsr_und; u64 spsr_irq; u64 spsr_fiq;
struct user_fpsimd_state fp_regs;
u64 sys_regs[NR_SYS_REGS];
struct kvm_vcpu *__hyp_running_vcpu; };
struct kvm_pmu_events { u32 events_host; u32 events_guest; };
struct kvm_host_data { struct kvm_cpu_context host_ctxt; struct kvm_pmu_events pmu_events; };
struct kvm_host_psci_config { /* PSCI version used by host. */ u32 version;
/* Function IDs used by host if version is v0.1. */ struct psci_0_1_function_ids function_ids_0_1;
bool psci_0_1_cpu_suspend_implemented; bool psci_0_1_cpu_on_implemented; bool psci_0_1_cpu_off_implemented; bool psci_0_1_migrate_implemented; };
extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
extern s64 kvm_nvhe_sym(hyp_physvirt_offset); #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
struct vcpu_reset_state { unsigned long pc; unsigned long r0; bool be; bool reset; };
struct kvm_vcpu_arch { struct kvm_cpu_context ctxt; void *sve_state; unsigned int sve_max_vl;
/* Stage 2 paging state used by the hardware on next switch */ struct kvm_s2_mmu *hw_mmu;
/* Values of trap registers for the guest. */ u64 hcr_el2; u64 mdcr_el2; u64 cptr_el2;
/* Values of trap registers for the host before guest entry. */ u64 mdcr_el2_host;
/* Exception Information */ struct kvm_vcpu_fault_info fault;
/* State of various workarounds, see kvm_asm.h for bit assignment */ u64 workaround_flags;
/* Miscellaneous vcpu state flags */ u64 flags;
/* * We maintain more than a single set of debug registers to support * debugging the guest from the host and to maintain separate host and * guest state during world switches. vcpu_debug_state are the debug * registers of the vcpu as the guest sees them. host_debug_state are * the host registers which are saved and restored during * world switches. external_debug_state contains the debug * values we want to debug the guest. This is set via the * KVM_SET_GUEST_DEBUG ioctl. * * debug_ptr points to the set of debug registers that should be loaded * onto the hardware when running the guest. */ struct kvm_guest_debug_arch *debug_ptr; struct kvm_guest_debug_arch vcpu_debug_state; struct kvm_guest_debug_arch external_debug_state;
struct thread_info *host_thread_info; /* hyp VA */ struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
struct { /* {Break,watch}point registers */ struct kvm_guest_debug_arch regs; /* Statistical profiling extension */ u64 pmscr_el1; /* Self-hosted trace */ u64 trfcr_el1; } host_debug_state;
/* VGIC state */ struct vgic_cpu vgic_cpu; struct arch_timer_cpu timer_cpu; struct kvm_pmu pmu;
/* * Anything that is not used directly from assembly code goes * here. */
/* * Guest registers we preserve during guest debugging. * * These shadow registers are updated by the kvm_handle_sys_reg * trap handler if the guest accesses or updates them while we * are using guest debug. */ struct { u32 mdscr_el1; } guest_debug_preserved;
/* vcpu power-off state */ bool power_off;
/* Don't run the guest (internal implementation need) */ bool pause;
/* Cache some mmu pages needed inside spinlock regions */ struct kvm_mmu_memory_cache mmu_page_cache;
/* Target CPU and feature flags */ int target; DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
/* Detect first run of a vcpu */ bool has_run_once;
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */ u64 vsesr_el2;
/* Additional reset state */ struct vcpu_reset_state reset_state;
/* True when deferrable sysregs are loaded on the physical CPU, * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */ bool sysregs_loaded_on_cpu;
/* Guest PV state */ struct { u64 last_steal; gpa_t base; } steal; };
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ sve_ffr_offset((vcpu)->arch.sve_max_vl))
#define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
#define vcpu_sve_state_size(vcpu) ({ \ size_t __size_ret; \ unsigned int __vcpu_vq; \ \ if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ __size_ret = 0; \ } else { \ __vcpu_vq = vcpu_sve_max_vq(vcpu); \ __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ } \ \ __size_ret; \ })
/* vcpu_arch flags field values: */ #define KVM_ARM64_DEBUG_DIRTY (1 << 0) #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ #define KVM_ARM64_PENDING_EXCEPTION (1 << 8) /* Exception pending */ #define KVM_ARM64_EXCEPT_MASK (7 << 9) /* Target EL/MODE */ #define KVM_ARM64_DEBUG_STATE_SAVE_SPE (1 << 12) /* Save SPE context if active */ #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active */
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ KVM_GUESTDBG_USE_SW_BP | \ KVM_GUESTDBG_USE_HW | \ KVM_GUESTDBG_SINGLESTEP) /* * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can * take the following values: * * For AArch32 EL1: */ #define KVM_ARM64_EXCEPT_AA32_UND (0 << 9) #define KVM_ARM64_EXCEPT_AA32_IABT (1 << 9) #define KVM_ARM64_EXCEPT_AA32_DABT (2 << 9) /* For AArch64: */ #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC (0 << 9) #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ (1 << 9) #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ (2 << 9) #define KVM_ARM64_EXCEPT_AA64_ELx_SERR (3 << 9) #define KVM_ARM64_EXCEPT_AA64_EL1 (0 << 11) #define KVM_ARM64_EXCEPT_AA64_EL2 (1 << 11)
/* * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be * set together with an exception... */ #define KVM_ARM64_INCREMENT_PC (1 << 9) /* Increment PC */
#define vcpu_has_sve(vcpu) (system_supports_sve() && \ ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
#ifdef CONFIG_ARM64_PTR_AUTH #define vcpu_has_ptrauth(vcpu) \ ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) #else #define vcpu_has_ptrauth(vcpu) false #endif
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
/* * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the * memory backed version of a register, and not the one most recently * accessed by a running VCPU. For example, for userspace access or * for system registers that are never context switched, but only * emulated. */ #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) { /* * *** VHE ONLY *** * * System registers listed in the switch are not saved on every * exit from the guest but are only saved on vcpu_put. * * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but * should never be listed below, because the guest cannot modify its * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's * thread when emulating cross-VCPU communication. */ if (!has_vhe()) return false;
switch (reg) { case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break; case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; case PAR_EL1: *val = read_sysreg_par(); break; case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; default: return false; }
return true; }
static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) { /* * *** VHE ONLY *** * * System registers listed in the switch are not restored on every * entry to the guest but are only restored on vcpu_load. * * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but * should never be listed below, because the MPIDR should only be set * once, before running the VCPU, and never changed later. */ if (!has_vhe()) return false;
switch (reg) { case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break; case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; default: return false; }
return true; }
struct kvm_vm_stat { struct kvm_vm_stat_generic generic; };
struct kvm_vcpu_stat { struct kvm_vcpu_stat_generic generic; u64 hvc_exit_stat; u64 wfe_exit_stat; u64 wfi_exit_stat; u64 mmio_exit_user; u64 mmio_exit_kernel; u64 signal_exits; u64 exits; };
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events);
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events);
#define KVM_ARCH_WANT_MMU_NOTIFIER
void kvm_arm_halt_guest(struct kvm *kvm); void kvm_arm_resume_guest(struct kvm *kvm);
#ifndef __KVM_NVHE_HYPERVISOR__ #define kvm_call_hyp_nvhe(f, ...) \ ({ \ struct arm_smccc_res res; \ \ arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ ##__VA_ARGS__, &res); \ WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ \ res.a1; \ })
/* * The couple of isb() below are there to guarantee the same behaviour * on VHE as on !VHE, where the eret to EL1 acts as a context * synchronization event. */ #define kvm_call_hyp(f, ...) \ do { \ if (has_vhe()) { \ f(__VA_ARGS__); \ isb(); \ } else { \ kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ } \ } while(0)
#define kvm_call_hyp_ret(f, ...) \ ({ \ typeof(f(__VA_ARGS__)) ret; \ \ if (has_vhe()) { \ ret = f(__VA_ARGS__); \ isb(); \ } else { \ ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ } \ \ ret; \ }) #else /* __KVM_NVHE_HYPERVISOR__ */ #define kvm_call_hyp(f, ...) f(__VA_ARGS__) #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) #endif /* __KVM_NVHE_HYPERVISOR__ */
void force_vm_exit(const cpumask_t *mask);
int handle_exit(struct kvm_vcpu *vcpu, int exception_index); void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
void kvm_sys_reg_table_init(void);
/* MMIO helpers */ void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
int kvm_perf_init(void); int kvm_perf_teardown(void);
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
bool kvm_arm_pvtime_supported(void); int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) { vcpu_arch->steal.base = GPA_INVALID; }
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) { return (vcpu_arch->steal.base != GPA_INVALID); }
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) { /* The host's MPIDR is immutable, so let's set it up at boot time */ ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); }
static inline bool kvm_system_needs_idmapped_vectors(void) { return cpus_have_const_cap(ARM64_SPECTRE_V3A); }
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
static inline void kvm_arch_hardware_unsetup(void) {} static inline void kvm_arch_sync_events(struct kvm *kvm) {} static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
void kvm_arm_init_debug(void); void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, struct kvm_arm_copy_mte_tags *copy_tags);
/* Guest/host FPSIMD coordination helpers */ int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) { return (!has_vhe() && attr->exclude_host); }
/* Flags for host debug state */ void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) { return kvm_arch_vcpu_run_map_fp(vcpu); }
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); void kvm_clr_pmu_events(u32 clr);
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); #else static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} static inline void kvm_clr_pmu_events(u32 clr) {} #endif
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
int kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC struct kvm *kvm_arch_alloc_vm(void);
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
static inline bool kvm_vm_is_protected(struct kvm *kvm) { return false; }
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
#define kvm_arm_vcpu_sve_finalized(vcpu) \ ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
#define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled) #define kvm_vcpu_has_pmu(vcpu) \ (test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))
#define kvm_supports_32bit_el0() \ (system_supports_32bit_el0() && \ !static_branch_unlikely(&arm64_mismatched_32bit_el0))
int kvm_trng_call(struct kvm_vcpu *vcpu); #ifdef CONFIG_KVM extern phys_addr_t hyp_mem_base; extern phys_addr_t hyp_mem_size; void __init kvm_hyp_reserve(void); #else static inline void kvm_hyp_reserve(void) { } #endif
#endif /* __ARM64_KVM_HOST_H__ */
|