Viewing file: paravirt.h (3.77 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_PARAVIRT_H #define _ASM_POWERPC_PARAVIRT_H
#include <linux/jump_label.h> #include <asm/smp.h> #ifdef CONFIG_PPC64 #include <asm/paca.h> #include <asm/hvcall.h> #endif
#ifdef CONFIG_PPC_SPLPAR #include <linux/smp.h> #include <asm/kvm_guest.h> #include <asm/cputhreads.h>
DECLARE_STATIC_KEY_FALSE(shared_processor);
static inline bool is_shared_processor(void) { return static_branch_unlikely(&shared_processor); }
/* If bit 0 is set, the cpu has been preempted */ static inline u32 yield_count_of(int cpu) { __be32 yield_count = READ_ONCE(lppaca_of(cpu).yield_count); return be32_to_cpu(yield_count); }
/* * Spinlock code confers and prods, so don't trace the hcalls because the * tracing code takes spinlocks which can cause recursion deadlocks. * * These calls are made while the lock is not held: the lock slowpath yields if * it can not acquire the lock, and unlock slow path might prod if a waiter has * yielded). So this may not be a problem for simple spin locks because the * tracing does not technically recurse on the lock, but we avoid it anyway. * * However the queued spin lock contended path is more strictly ordered: the * H_CONFER hcall is made after the task has queued itself on the lock, so then * recursing on that lock will cause the task to then queue up again behind the * first instance (or worse: queued spinlocks use tricks that assume a context * never waits on more than one spinlock, so such recursion may cause random * corruption in the lock code). */ static inline void yield_to_preempted(int cpu, u32 yield_count) { plpar_hcall_norets_notrace(H_CONFER, get_hard_smp_processor_id(cpu), yield_count); }
static inline void prod_cpu(int cpu) { plpar_hcall_norets_notrace(H_PROD, get_hard_smp_processor_id(cpu)); }
static inline void yield_to_any(void) { plpar_hcall_norets_notrace(H_CONFER, -1, 0); } #else static inline bool is_shared_processor(void) { return false; }
static inline u32 yield_count_of(int cpu) { return 0; }
extern void ___bad_yield_to_preempted(void); static inline void yield_to_preempted(int cpu, u32 yield_count) { ___bad_yield_to_preempted(); /* This would be a bug */ }
extern void ___bad_yield_to_any(void); static inline void yield_to_any(void) { ___bad_yield_to_any(); /* This would be a bug */ }
extern void ___bad_prod_cpu(void); static inline void prod_cpu(int cpu) { ___bad_prod_cpu(); /* This would be a bug */ }
#endif
#define vcpu_is_preempted vcpu_is_preempted static inline bool vcpu_is_preempted(int cpu) { if (!is_shared_processor()) return false;
#ifdef CONFIG_PPC_SPLPAR if (!is_kvm_guest()) { int first_cpu;
/* * The result of vcpu_is_preempted() is used in a * speculative way, and is always subject to invalidation * by events internal and external to Linux. While we can * be called in preemptable context (in the Linux sense), * we're not accessing per-cpu resources in a way that can * race destructively with Linux scheduler preemption and * migration, and callers can tolerate the potential for * error introduced by sampling the CPU index without * pinning the task to it. So it is permissible to use * raw_smp_processor_id() here to defeat the preempt debug * warnings that can arise from using smp_processor_id() * in arbitrary contexts. */ first_cpu = cpu_first_thread_sibling(raw_smp_processor_id());
/* * Preemption can only happen at core granularity. This CPU * is not preempted if one of the CPU of this core is not * preempted. */ if (cpu_first_thread_sibling(cpu) == first_cpu) return false; } #endif
if (yield_count_of(cpu) & 1) return true; return false; }
static inline bool pv_is_native_spin_unlock(void) { return !is_shared_processor(); }
#endif /* _ASM_POWERPC_PARAVIRT_H */
|